44 research outputs found

    A cluster of cystic fibrosis mutations in the first nucleotide-binding fold of the cystic fibrosis conductance regulator protein

    No full text
    The gene responsible for cystic fibrosis (CF) has recently been identified and is predicted to encode a protein of 1,480 amino acids called the CF transmembrane conductance regulator (CFTR). Several functional regions are thought to exist in the CFTR protein, including two areas for ATP-binding, termed nucleotide-binding folds (NBFs), a regulatory (R) region that has many possible sites for phosphorylation by protein kinases A and C, and two hydrophobic regions that probably interact with cell membranes. The most common CF gene mutation leads to omission of phenylalanine residue 508 in the putative first NBF, indicating that this region is functionally important. To determine whether other mutations occur in the NBFs of CFTR, we determined the nucleotide sequences of exons 9, 10, 11 and 12 (encoding the first NBF) and exons 20, 21 and 22 (encoding most of the second NBF) from 20 Caucasian and 18 American-black CF patients. One cluster of four mutations was discovered in a 30-base-pair region of exon 11. Three of these mutations cause amino-acid substitutions at residues that are highly conserved among the CFTR protein, the multiple-drug-resistance proteins and ATP-binding membrane-associated transport proteins. The fourth mutation creates a premature termination signal. These mutations reveal a functionally important region in the CFTR protein and provide further evidence that CFTR is a member of the family of ATP-dependent transport proteins.link_to_subscribed_fulltex

    Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12

    Full text link
    FKBP12, a cis-trans prolyl isomerase that binds the immunosuppressants FK506 and rapamycin, is ubiquitously expressed and interacts with proteins in several intracellular signal transduction systems(1). Although FKBP12 interacts with the cytoplasmic domains of type I receptors of the transforming growth factor-beta (TGF-beta) superfamily in vitro, the function of FKBP12 in TGF-beta superfamily signalling is controversial(2-6). FKBP12 also physically interacts stoichiometrically with multiple intracellular calcium release channels including the tetrameric skeletal muscle ryanodine dine receptor (RyR1)(7,8). In contrast, the cardiac ryanodine receptor, RyR2, appears to bind selectively the FKBP12 homologue, FKBP12.6 (refs 9, 10). To define the functions of FKBP12 in vivo, we generated mutant mice deficient in FKBP12 using embryonic stem (ES) cell technology. FKBP12-deficient mice have normal skeletal muscle but have severe dilated cardiomyopathy and ventricular septal defects that mimic a human congenital heart disorder, noncompaction of left ventricular myocardium(11,12). About 9% of the mutants exhibit exencephaly secondary to a defect in neural tube closure. Physiological studies demonstrate that FKBP12 is dispensable for TGF-beta-mediated signalling, but modulates the calcium release activity of both skeletal and cardiac ryanodine receptors.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62697/1/391489a0.pd
    corecore