60 research outputs found

    Ezrin interacts with the SARS coronavirus spike protein and restrains infection at the entry stage

    Get PDF
    © 2012 Millet et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: Entry of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and its envelope fusion with host cell membrane are controlled by a series of complex molecular mechanisms, largely dependent on the viral envelope glycoprotein Spike (S). There are still many unknowns on the implication of cellular factors that regulate the entry process. Methodology/Principal Findings: We performed a yeast two-hybrid screen using as bait the carboxy-terminal endodomain of S, which faces the cytosol during and after opening of the fusion pore at early stages of the virus life cycle. Here we show that the ezrin membrane-actin linker interacts with S endodomain through the F1 lobe of its FERM domain and that both the eight carboxy-terminal amino-acids and a membrane-proximal cysteine cluster of S endodomain are important for this interaction in vitro. Interestingly, we found that ezrin is present at the site of entry of S-pseudotyped lentiviral particles in Vero E6 cells. Targeting ezrin function by small interfering RNA increased S-mediated entry of pseudotyped particles in epithelial cells. Furthermore, deletion of the eight carboxy-terminal amino acids of S enhanced S-pseudotyped particles infection. Expression of the ezrin dominant negative FERM domain enhanced cell susceptibility to infection by SARS-CoV and S pseudotyped particles and potentiated S-dependent membrane fusion. Conclusions/Significance: Ezrin interacts with SARS-CoV S endodomain and limits virus entry and fusion. Our data present a novel mechanism involving a cellular factor in the regulation of S-dependent early events of infection.This work was supported by the Research Grant Council of Hong Kong (RGC#760208)and the RESPARI project of the International Network of Pasteur Institutes

    PAR6, A Potential Marker for the Germ Cells Selected to Form Primordial Follicles in Mouse Ovary

    Get PDF
    Partitioning-defective proteins (PAR) are detected to express mainly in the cytoplast, and play an important role in cell polarity. However, we showed here that PAR6, one kind of PAR protein, was localized in the nuclei of mouse oocytes that formed primordial follicles during the perinatal period, suggesting a new role of PAR protein. It is the first time we found that, in mouse fetal ovaries, PAR6 appeared in somatic cell cytoplasm and fell weak when somatic cells invaded germ cell cysts at 17.5 days post coitus (dpc). Meanwhile, the expression of PAR6 was observed in cysts, and became strong in the nuclei of some germ cells at 19.5 dpc and all primordial follicular oocytes at 3 day post parturition (dpp), and then obviously declined when the primordial follicles entered the folliculogenic growth phase. During the primordial follicle pool foundation, the number of PAR6 positive germ cells remained steady and was consistent with that of formed follicles at 3 dpp. There were no TUNEL (apoptosis examination) positive germ cells stained with PAR6 at any time studied. The number of follicles significantly declined when 15.5 dpc ovaries were treated with the anti-PAR6 antibody and PAR6 RNA interference. Carbenoxolone (CBX, a known blocker of gap junctions) inhibited the expression of PAR6 in germ cells and the formation of follicles. Our results suggest that PAR6 could be used as a potential marker of germ cells for the primordial follicle formation, and the expression of PAR6 by a gap junction-dependent process may contribute to the formation of primordial follicles and the maintenance of oocytes at the diplotene stage

    Stomatin Inhibits Pannexin-1-Mediated Whole-Cell Currents by Interacting with Its Carboxyl Terminal

    Get PDF
    The pannexin-1 (Panx1) channel (often referred to as the Panx1 hemichannel) is a large-conductance channel in the plasma membrane of many mammalian cells. While opening of the channel is potentially detrimental to the cell, little is known about how it is regulated under physiological conditions. Here we show that stomatin inhibited Panx1 channel activity. In transfected HEK-293 cells, stomatin reduced Panx1-mediated whole-cell currents without altering either the total or membrane surface Panx1 protein expression. Stomatin coimmunoprecipitated with full-length Panx1 as well as a Panx1 fragment containing the fourth membrane-spanning domain and the cytosolic carboxyl terminal. The inhibitory effect of stomatin on Panx1-mediated whole-cell currents was abolished by truncating Panx1 at a site in the cytosolic carboxyl terminal. In primary culture of mouse astrocytes, inhibition of endogenous stomatin expression by small interfering RNA enhanced Panx1-mediated outward whole-cell currents. These observations suggest that stomatin may play important roles in astrocytes and other cells by interacting with Panx1 carboxyl terminal to limit channel opening

    3D simulation as training tool in container terminals: The TRAINPORTS simulator

    No full text
    Modeling & Simulation (M&S) provides one of the best solutions for personnel and managers training in complex environments. In this article, the authors present an advanced High Level Architecture (HLA) federation of simulators (TRAINPORTS, TRAINing in marine PORTs by using Simulation), that recreates in a three-dimensional virtual environment the most important transshipment terminal of the South Mediterranean area, the Gioia Tauro container terminal. The TRAINPORTS federation includes four different federates (Straddle Carrier, Quay Crane, Forklift and Truck) and offers an advanced tool for marine port operators' training providing the sensation of being in a real container terminal environment. The TRAINPORTS federation is part of an innovative family of simulators (called ST_VP, Simulation Team Virtual Port). This article presents the TRAINPORTS architecture, describes the federates/federation development process and discusses the simulators operation modes and verification and validation issues. (C) 2012 The Society of Manufacturing Engineers. Published by Elsevier Ltd. All rights reserved

    Cougar: Concept and new approach to service management by using simulation

    No full text
    This paper proposes the challenges introduced by the development of a simulation based DSS (Decision Support System) for maintenance of complex systems such as helicopters, trains, power plants. The paper proposes the simulation architecture devoted to face this level of complexity and the critical issue analysis related to its development
    corecore