45 research outputs found

    Tunable Frohlich Polarons in Organic Single-Crystal Transistors

    Full text link
    In organic field effect transistors (FETs), charges move near the surface of an organic semiconductor, at the interface with a dielectric. In the past, the nature of the microscopic motion of charge carriers -that determines the device performance- has been related to the quality of the organic semiconductor. Recently, it has been appreciated that also the nearby dielectric has an unexpectedly strong influence. The mechanisms responsible for this influence are not understood. To investigate these mechanisms we have studied transport through organic single crystal FETs with different gate insulators. We find that the temperature dependence of the mobility evolves from metallic-like to insulating-like with increasing the dielectric constant of the insulator. The phenomenon is accounted for by a two-dimensional Frohlich polaron model that quantitatively describes our observations and shows that increasing the dielectric polarizability results in a crossover from the weak to the strong polaronic coupling regime

    Solution-processed, Self-organized Organic Single Crystal Arrays with Controlled Crystal Orientation

    Get PDF
    A facile solution process for the fabrication of organic single crystal semiconductor devices which meets the demand for low-cost and large-area fabrication of high performance electronic devices is demonstrated. In this paper, we develop a bottom-up method which enables direct formation of organic semiconductor single crystals at selected locations with desired orientations. Here oriented growth of one-dimensional organic crystals is achieved by using self-assembly of organic molecules as the driving force to align these crystals in patterned regions. Based upon the self-organized organic single crystals, we fabricate organic field effect transistor arrays which exhibit an average field-effect mobility of 1.1 cm2V−1s−1. This method can be carried out under ambient atmosphere at room temperature, thus particularly promising for production of future plastic electronics

    Peripheral blood and neuropsychological markers for the onset of action of antidepressant drugs in patients with Major Depressive Disorder

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Major Depressive Disorder (MDD), treatment outcomes with currently available strategies are often disappointing. Therefore, it is sensible to develop new strategies to increase remission rates in acutely depressed patients. Many studies reported that true drug response can be observed within 14 days (early improvement) of antidepressant treatment. The identical time course of symptom amelioration after early improvement in patients treated with antidepressants of all classes or with placebo strongly suggests a common biological mechanism, which is not specific for a particular antidepressant medication. However, the biology underlying early improvement and final treatment response is not understood and there is no established biological marker as yet, which can predict treatment response for the individual patient before initiation or during the course of antidepressant treatment. Peripheral blood markers and executive functions are particularly promising candidates as markers for the onset of action and thus the prediction of final treatment outcome in MDD.</p> <p>Methods/Design</p> <p>The present paper presents the rationales, objectives and methods of a multi-centre study applying close-meshed repetitive measurements of peripheral blood and neuropsychological parameters in patients with MDD and healthy controls during a study period of eight weeks for the identification of biomarkers for the onset of antidepressants' action in patients with MDD. Peripheral blood parameters and depression severity are assessed in weekly intervals from baseline to week 8, executive performance in bi-weekly intervals. Patients are participating in a randomized controlled multi-level clinical trial, healthy controls are matched according to mean age, sex and general intelligence.</p> <p>Discussion</p> <p>This investigation will help to identify a biomarker or a set of biomarkers with decision-making quality in the treatment of MDD in order to increase the currently disappointing remission rates of antidepressant treatment.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00974155">NCT00974155</a></p

    Thrombosis in vasculitis: from pathogenesis to treatment

    Get PDF
    In recent years, the relationship between inflammation and thrombosis has been deeply investigated and it is now clear that immune and coagulation systems are functionally interconnected. Inflammation-induced thrombosis is by now considered a feature not only of autoimmune rheumatic diseases, but also of systemic vasculitides such as Behçet’s syndrome, ANCA-associated vasculitis or giant cells arteritis, especially during active disease. These findings have important consequences in terms of management and treatment. Indeed, Behçet’syndrome requires immunosuppressive agents for vascular involvement rather than anticoagulation or antiplatelet therapy, and it is conceivable that also in ANCA-associated vasculitis or large vessel-vasculitis an aggressive anti-inflammatory treatment during active disease could reduce the risk of thrombotic events in early stages. In this review we discuss thrombosis in vasculitides, especially in Behçet’s syndrome, ANCA-associated vasculitis and large-vessel vasculitis, and provide pathogenetic and clinical clues for the different specialists involved in the care of these patients

    Regulatory T cells and their role in rheumatic diseases: a potential target for novel therapeutic development

    Get PDF
    Regulatory T cells have an important role in limiting immune reactions and are essential regulators of self-tolerance. Among them, CD4+CD25high regulatory T cells are the best-described subset. In this article, we summarize current knowledge on the phenotype, function, and development of CD4+CD25high regulatory T cells. We also review the literature on the role of these T cells in rheumatic diseases and discuss the potential for their use in immunotherapy

    Introduction: An Overview

    No full text

    No red cell alloimmunization or change of clinical outcome after using fresh frozen cancellous allograft bone for acetabular reconstruction in revision hip arthroplasty: a follow up study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Possible immunization to blood group or other antigens and subsequent inhibition of remodeling or incorporation after use of untreated human bone allograft was described previously. This study presents the immunological, clinical and radiological results of 30 patients with acetabular revisions using fresh frozen non-irradiated bone allograft.</p> <p>Methods</p> <p>AB0-incompatible (donor-recipient) bone transplantation was performed in 22 cases, Rh(D) incompatible transplantation in 6 cases. The mean follow up of 23 months included measuring Harris hip score and radiological examination with evaluation of remodeling of the bone graft, implant migration and heterotopic ossification. In addition, all patients were screened for alloimmunization to Rh blood group antigens.</p> <p>Results</p> <p>Compared to the whole study group, there were no differences in clinical or radiological measurements for the groups with AB0- or Rh(D)-incompatible bone transplantation. The mean Harris Hip Score was 80.6. X-rays confirmed total remodeling of all allografts with no acetabular loosening. At follow up, blood tests revealed no alloimmunization to Rh blood group donor antigens.</p> <p>Conclusions</p> <p>The use of fresh frozen non-irradiated bone allograft in acetabular revision is a reliable supplement to reconstruction. The risk of alloimmunization to donor-blood group antigens after AB0- or Rh-incompatible allograft transplantation with a negative long-term influence on bone-remodeling or the clinical outcome is negligible.</p

    Microwave alkylation of lithium tetrazolate

    Get PDF
    N1-substituted tetrazoles are interesting ligands in transition metal coordination chemistry, especially in the field of spin crossover. Their synthesis is performed in most cases according to the Franke-synthesis, using a primary amine as reagent introducing the substitution pattern. To enhance flexibility in means of substrate scope, we developed a new protocol based on alkylation of lithium tetrazolate with alkyl bromides. The N1–N2 isomerism of the tetrazole during the alkylation was successfully suppressed by use of highly pure lithium tetrazolate and 30 vol.% aqueous ethanol as solvent, leading to pure N1-substituted products. The feasibility of this reaction was demonstrated by a selection of different substrates.Austrian Science Fund (FWF
    corecore