10 research outputs found

    Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals

    Get PDF
    Control of spontaneously emitted light lies at the heart of quantum optics. It is essential for diverse applications ranging from miniature lasers and light-emitting diodes, to single-photon sources for quantum information, and to solar energy harvesting. To explore such new quantum optics applications, a suitably tailored dielectric environment is required in which the vacuum fluctuations that control spontaneous emission can be manipulated. Photonic crystals provide such an environment: they strongly modify the vacuum fluctuations, causing the decay of emitted light to be accelerated or slowed down, to reveal unusual statistics, or to be completely inhibited in the ideal case of a photonic bandgap. Here we study spontaneous emission from semiconductor quantum dots embedded in inverse opal photonic crystals. We show that the spectral distribution and time-dependent decay of light emitted from excitons confined in the quantum dots are controlled by the host photonic crystal. Modified emission is observed over large frequency bandwidths of 10%, orders of magnitude larger than reported for resonant optical microcavities. Both inhibited and enhanced decay rates are observed depending on the optical emission frequency, and they are controlled by the crystals’ lattice parameter. Our experimental results provide a basis for all-solid-state dynamic control\ud of optical quantum systems

    "High risk" HPV types are frequently detected in potentially malignant and malignant oral lesions, but not in normal oral mucosa

    No full text
    Studies on the involvement of the human papillomavirus (HPV) in initiation and progression of oral neoplasia have generated conflicting results. The observed discrepancy is attributable mainly to the varying sensitivity of the applied methodologies and to epidemiologic factors of the examined patient groups. To evaluate the role of HPV in oral carcinogenesis, we analyzed 53 potentially neoplastic and neoplastic oral lesions consisting of 29 cases of hyperplasia, 5 cases of dysplasia, and 19 cases of squamous cell carcinomas, as well as 16 oral specimens derived from healthy individuals. A highly sensitive nested polymerase chain reaction (PCR) assay was used, along with type-specific PCR, restriction fragment length polymorphism analysis, dot blotting, and nonisotopic in situ hybridization. Nested PCR revealed the presence of HPV DNA in 48 of the 53 (91%) pathologic samples analyzed, whereas none (0%) of the normal specimens was found to be infected. Positivity for HPV was independent of histology and the smoking habits of the analyzed group of patients. At least one &quot;high risk&quot; type, such as HPV 16, 18, and 33, was detected by type-specific PCR in 47 (98%) infected specimens, whereas only 1 (2%) squamous cell carcinoma was solely infected by a &quot;low risk&quot; type (HPV 6). HPV 16 was the prevailing viral type, being present in 71% of infected cases. Single HPV 16 and HPV 18 infections were confirmed by restriction fragment length polymorphism. HPV 58 was detected by dot blotting in three hyperplastic lesions. HPV positivity and genotyping were further confirmed, and the physical status of this virus was evaluated by nonisotopic in situ hybridization. Diffuse and punctate signals, indicative of the episomal and integrative pattern of HPV infection, were observed for low- and high-risk types, respectively. Our findings are suggestive of an early involvement of high-risk HPV types in oral carcinogenesis.</p

    The Epidemiology of Human Papillomavirus Infections

    No full text

    Assessing written work by determining competence to achieve the module-specific learning outcomes.

    No full text
    This chapter describes lasers and other sources of coherent light that operate in a wide wavelength range. First, the general principles for the generation of coherent continuous-wave and pulsed radiation are treated including the interaction of radiation with matter, the properties of optical resonators and their modes as well as such processes as Q-switching and mode-locking. The general introduction is followed by sections on numerous types of lasers, the emphasis being on todayʼs most important sources of coherent light, in particular on solid-state lasers and several types of gas lasers. An important part of the chapter is devoted to the generation of coherent radiation by nonlinear processes with optical parametric oscillators, difference- and sum-frequency generation, and high-order harmonics. Radiation in the extended ultraviolet (EUV) and x-ray ranges can be generated by free electron lasers (FEL) and advanced x-ray sources. Ultrahigh light intensities up to 1021 W/cm2 open the door to studies of relativistic laser–matter interaction and laser particle acceleration. The chapter closes with a section on laser stabilization
    corecore