8 research outputs found

    Mouse models of neurodegenerative disease: preclinical imaging and neurovascular component.

    Get PDF
    Neurodegenerative diseases represent great challenges for basic science and clinical medicine because of their prevalence, pathologies, lack of mechanism-based treatments, and impacts on individuals. Translational research might contribute to the study of neurodegenerative diseases. The mouse has become a key model for studying disease mechanisms that might recapitulate in part some aspects of the corresponding human diseases. Neurode- generative disorders are very complicated and multifacto- rial. This has to be taken in account when testing drugs. Most of the drugs screening in mice are very di cult to be interpretated and often useless. Mouse models could be condiderated a ‘pathway models’, rather than as models for the whole complicated construct that makes a human disease. Non-invasive in vivo imaging in mice has gained increasing interest in preclinical research in the last years thanks to the availability of high-resolution single-photon emission computed tomography (SPECT), positron emission tomography (PET), high eld Magnetic resonance, Optical Imaging scanners and of highly speci c contrast agents. Behavioral test are useful tool to characterize di erent ani- mal models of neurodegenerative pathology. Furthermore, many authors have observed vascular pathological features associated to the di erent neurodegenerative disorders. Aim of this review is to focus on the di erent existing animal models of neurodegenerative disorders, describe behavioral tests and preclinical imaging techniques used for diagnose and describe the vascular pathological features associated to these diseases

    Emerging roles of T helper 17 and regulatory T cells in lung cancer progression and metastasis

    Full text link

    Mass appeal:metabolite identification in mass spectrometry-focused untargeted metabolomics

    Get PDF
    Metabolomics has advanced significantly in the past 10 years with important developments related to hardware, software and methodologies and an increasing complexity of applications. In discovery-based investigations, applying untargeted analytical methods, thousands of metabolites can be detected with no or limited prior knowledge of the metabolite composition of samples. In these cases, metabolite identification is required following data acquisition and processing. Currently, the process of metabolite identification in untargeted metabolomic studies is a significant bottleneck in deriving biological knowledge from metabolomic studies. In this review we highlight the different traditional and emerging tools and strategies applied to identify subsets of metabolites detected in untargeted metabolomic studies applying various mass spectrometry platforms. We indicate the workflows which are routinely applied and highlight the current limitations which need to be overcome to provide efficient, accurate and robust identification of metabolites in untargeted metabolomic studies. These workflows apply to the identification of metabolites, for which the structure can be assigned based on entries in databases, and for those which are not yet stored in databases and which require a de novo structure elucidation.

    Emerging roles of T helper 17 and regulatory T cells in lung cancer progression and metastasis

    Get PDF
    Lung cancer is a leading cause of cancer-related deaths worldwide. Lung cancer risk factors, including smoking and exposure to environmental carcinogens, have been linked to chronic inflammation. An integral feature of inflammation is the activation, expansion and infiltration of diverse immune cell types, including CD4+ T cells. Within this T cell subset are immunosuppressive regulatory T (Treg) cells and pro-inflammatory T helper 17 (Th17) cells that act in a fine balance to regulate appropriate adaptive immune responses. In the context of lung cancer, evidence suggests that Tregs promote metastasis and metastatic tumor foci development. Additionally, Th17 cells have been shown to be an integral component of the inflammatory milieu in the tumor microenvironment, and potentially involved in promoting distinct lung tumor phenotypes. Studies have shown that the composition of Tregs and Th17 cells are altered in the tumor microenvironment, and that these two CD4+ T cell subsets play active roles in promoting lung cancer progression and metastasis. We review current knowledge on the influence of Treg and Th17 cells on lung cancer tumorigenesis, progression, metastasis and prognosis. Furthermore, we discuss the potential biological and clinical implications of the balance among Treg/Th17 cells in the context of the lung tumor microenvironment and highlight the potential prognostic function and relationship to metastasis in lung cancer.Medicine, Faculty ofScience, Faculty ofNon UBCMicrobiology and Immunology, Department ofPathology and Laboratory Medicine, Department ofZoology, Department ofReviewedFacult

    Mouse models of neurodegenerative disease: preclinical imaging and neurovascular component

    No full text
    corecore