36 research outputs found

    HPLC for Simultaneous Quantification of Total Ceramide, Glucosylceramide, and Ceramide Trihexoside Concentrations in Plasma

    Full text link
    BACKGROUND: Simple, reproducible assays are needed for the quantification of sphingolipids, ceramide (Cer), and sphingoid bases. We developed an HPLC method for simultaneous quantification of total plasma concentrations of Cer, glucosylceramide (GlcCer), and ceramide trihexoside (CTH). METHODS: After addition of sphinganine as internal calibrator, we extracted lipids from 50 microL plasma. We deacylated Cer and glycosphingolipids by use of microwave-assisted hydrolysis in methanolic NaOH, followed by derivatization of the liberated amino-group with o-phthaldialdehyde. We separated the derivatized sphingoid bases and lysoglycosphingolipids by HPLC on a C18 reversed-phase column with a methanol/water mobile phase (88:12, vol/vol) and quantified them by use of a fluorescence detector at lambda(ex) 340 nm and lambda(em) 435 nm. RESULTS: Optimal conditions in the Solids/Moisture System SAM-155 microwave oven (CEM Corp.) for the complete deacylation of Cer and neutral glycosphingolipids without decomposition were 60 min at 85% power, fan setting 7. Intra- and interassay CVs were <4% and <14%, respectively, and recovery rates were 87%-113%. The limit of quantification was 2 pmol (0.1 pmol on column), and the method was linear over the interval of 2-200 microL plasma. In samples from 40 healthy individuals, mean (SD) concentrations were 9.0 (2.3) micromol/L for Cer, 6.3 (1.9) micromol/L for GlcCer, and 1.7 (0.5) micromol/L for CTH. Plasma concentrations of GlcCer were higher in Gaucher disease patient samples and of CTH in Fabry disease patient samples. CONCLUSIONS: HPLC enables quantification of total Cer, GlcCer, and CTH in plasma and is useful for the follow-up of patients on therapy for Gaucher or Fabry diseas

    The Genomes of the Fungal Plant Pathogens Cladosporium fulvum and Dothistroma septosporum Reveal Adaptation to Different Hosts and Lifestyles But Also Signatures of Common Ancestry

    Get PDF
    We sequenced and compared the genomes of the Dothideomycete fungal plant pathogens Cladosporium fulvum (Cfu) (syn. Passalora fulva) and Dothistroma septosporum (Dse) that are closely related phylogenetically, but have different lifestyles and hosts. Although both fungi grow extracellularly in close contact with host mesophyll cells, Cfu is a biotroph infecting tomato, while Dse is a hemibiotroph infecting pine. The genomes of these fungi have a similar set of genes (70% of gene content in both genomes are homologs), but differ significantly in size (Cfu >61.1-Mb; Dse 31.2-Mb), which is mainly due to the difference in repeat content (47.2% in Cfu versus 3.2% in Dse). Recent adaptation to different lifestyles and hosts is suggested by diverged sets of genes. Cfu contains an a-tomatinase gene that we predict might be required for detoxification of tomatine, while this gene is absent in Dse. Many genes encoding secreted proteins are unique to each species and the repeat-rich areas in Cfu are enriched for these species-specific genes. In contrast, conserved genes suggest common host ancestry. Homologs of Cfu effector genes, including Ecp2 and Avr4, are present in Dse and induce a Cf-Ecp2- and Cf-4-mediated hypersensitive response, respectively. Strikingly, genes involved in production of the toxin dothistromin, a likely virulence factor for Dse, are conserved in Cfu, but their expression differs markedly with essentially no expression by Cfu in planta. Likewise, Cfu has a carbohydrate-degrading enzyme catalog that is more similar to that of necrotrophs or hemibiotrophs and a larger pectinolytic gene arsenal than Dse, but many of these genes are not expressed in planta or are pseudogenized. Overall, comparison of their genomes suggests that these closely related plant pathogens had a common ancestral host but since adapted to different hosts and lifestyles by a combination of differentiated gene content, pseudogenization, and gene regulatio

    Multiobjective decision support for land use planning

    No full text
    The overall objective of this paper is to show how a formal decision support method can be used effectively to support a land-use planning problem. Central to our approach is a heuristic algorithm based on a goal-programming/reference-point approach. The algorithm is tested on a small region in the Netherlands. To demonstrate the potential use of the algorithm, a planning problem is defined for this region. An interactive session with a land-use planner is then simulated, to show how feedback from the planner is used to generate a plan in a number of rounds. It is concluded that the approach has potential for the support of land-use problems especially in the first rounds of policy design as long as maps are used to interface between planner and algorithm. It is also shown that computational problems still hinder the achievement of realistic detail in the representation of the plan area

    Optimal R&D Subsidies under Technology Licensing

    No full text
    corecore