7 research outputs found
A fuzzy approach to addressing uncertainty in Airport Ground Movement optimisation
Funded by Engineering and Physical Sciences Research Counci
An Interval Type-2 Fuzzy Logic Based Map Matching Algorithm for Airport Ground Movements
Airports and their related operations have become the major bottlenecks to the entire air traffic management system, raising predictability, safety and environmental concerns. One of the underpinning techniques for digital and sustainable air transport is airport ground movement optimisation. Currently, real ground movement data is made freely available for the majority of aircraft at many airports. However, the recorded data is not accurate enough due to measurement errors and general uncertainties. In this paper, we aim to develop a new interval type-2 fuzzy logic based map matching algorithm, which can match each raw data point to the correct airport segment. To this aim, we first specifically design a set of interval type-2 Sugeno fuzzy rules and their associated rule weights, as well as the model output, based on preliminary experiments and sensitivity tests. Then, the fuzzy membership functions are fine-tuned by a particle swarm optimisation algorithm. Moreover, an extra checking step using the available data is further integrated to improve map matching accuracy. Using the real-world aircraft movement data at Hong Kong Airport, we compared the developed algorithm with other well-known map matching algorithms. Experimental results show that the designed interval type-2 fuzzy rules have the potential to handle map matching uncertainties, and the extra checking step can effectively improve map matching accuracy. The proposed algorithm is demonstrated to be robust and achieve the best map matching accuracy of over 96% without compromising the run time
A Rolling Window with Genetic Algorithm Approach to Sorting Aircraft for Automated Taxi Routing
With increasing demand for air travel and overloaded airport facilities, inefficient airport taxiing operations are a significant contributor to unnecessary fuel burn and a substantial source of pollution. Although taxiing is only a small part of a flight, aircraft engines are not optimised for taxiing speed and so contribute disproportionately to the overall fuel burn. Delays in taxiing also waste scarce airport resources and frustrate passengers. Consequently, reducing the time spent taxiing is an important investment. An exact algorithm for finding shortest paths based on A* allocates routes to aircraft that maintains aircraft at a safe distance apart, has been shown to yield efficient taxi routes. However, this approach depends on the order in which aircraft are chosen for allocating routes. Finding the right order in which to allocate routes to the aircraft is a combinatorial optimization problem in itself. We apply a rolling window approach incorporating a genetic algorithm for permutations to this problem, for real-world scenarios at three busy airports. This is compared to an exhaustive approach over small rolling windows, and the conventional first-come-firstserved ordering. We show that the GA is able to reduce overall taxi time with respect to the other approaches
Evolutionary Algorithms with Linkage Information for Feature Selection in Brain Computer Interfaces
Abstract Brain Computer Interfaces are an essential technology for the advancement of prosthetic limbs, but current signal acquisition methods are hindered by a number of factors, not least, noise. In this context, Feature Selection is required to choose the important signal features and improve classifier accuracy. Evolutionary algorithms have proven to outperform filtering methods (in terms of accuracy) for Feature Selection. This paper applies a single-point heuristic search method, Iterated Local Search (ILS), and compares it to a genetic algorithm (GA) and a memetic algorithm (MA). It then further attempts to utilise Linkage between features to guide search operators in the algorithms stated. The GA was found to outperform ILS. Counter-intuitively, linkage-guided algorithms resulted in higher classification error rates than their unguided alternatives. Explanations for this are explored
The intersection of Evolutionary Computation and Explainable AI
In the past decade, Explainable Artificial Intelligence (XAI) has attracted a great interest in the research community, motivated by the need for explanations in critical AI applications. Some recent advances in XAI are based on Evolutionary Computation (EC) techniques, such as Genetic Programming. We call this trend EC for XAI. We argue that the full potential of EC methods has not been fully exploited yet in XAI, and call the community for future efforts in this field. Likewise, we find that there is a growing concern in EC regarding the explanation of population-based methods, i.e., their search process and outcomes. While some attempts have been done in this direction (although, in most cases, those are not explicitly put in the context of XAI), we believe that there are still several research opportunities and open research questions that, in principle, may promote a safer and broader adoption of EC in real-world applications. We call this trend XAI within EC. In this position paper, we briefly overview the main results in the two above trends, and suggest that the EC community may play a major role in the achievement of XAI