41 research outputs found

    Impact of Saharan Dust on Ocean Surface Wind Speed Derived by Microwave Satellite Sensors

    No full text
    In the present paper ground truth and remotely sensed datasets were used for the investigation and quantification of the impact of Saharan dust on microwave propagation, the verification of theoretical results, and the validation of wind speeds determined by satellite microwave sensors. The influence of atmospheric dust was verified in two different study areas by investigations of single dust storms, wind statistics, wind speed scatter plots divided by the strength of Saharan dust storms, and wind speed differences in dependence of microwave frequencies and dust component of aerosol optical depth. An increase of the deviations of satellite wind speeds to ground truth wind speeds with higher microwave frequencies, with stronger dust storms, and with higher amount of coarse dust aerosols in coastal regions was obtained. Strong Saharan dust storms in coastal areas caused mean relative errors in the determination of wind speed by satellite microwave sensors of 16.3% at 10.7 GHz and of 20.3% at 37 GHz. The mean relative errors were smaller in the open sea area with 3.7% at 10.7 GHz and with 11.9% at 37 GHz

    Recent multidecadal strengthening of the Walker circulation across the tropical Pacific

    No full text
    The Pacific Walker circulation is a large overturning cell that spans the tropical Pacific Ocean, characterized by rising motion (lower sea-level pressure) over Indonesia and sinking motion (higher sea level-pressure) over the eastern Pacific1,2. Fluctuations in the Walker circulation reflect changes in the location and strength of tropical heating, so related circulation anomalies have global impacts3,4. On interannual timescales, the El Niño/Southern Oscillation accounts for much of the variability in the Walker circulation, but there is considerable interest in longer-term trends and their drivers, including anthropogenic climate change5,6,7,8,9,10,11,12. Here, we examine sea-level pressure trends in ten different data sets drawn from reanalysis, reconstructions and in situ measurements for 1900–2011. We show that periods with fewer in situ measurements result in lower signal-to-noise ratios, making assessments of sea-level pressure trends largely unsuitable before about the 1950s. Multidecadal trends evaluated since 1950 reveal statistically significant, negative values over the Indonesian region, with weaker, positive trends over the eastern Pacific. The overall trend towards a stronger, La Niña-like Walker circulation is nearly concurrent with the observed increase in global average temperatures, thereby justifying closer scrutiny of how the Pacific climate system has changed in the historical record
    corecore