284 research outputs found

    Functional cartography of complex metabolic networks

    Full text link
    High-throughput techniques are leading to an explosive growth in the size of biological databases and creating the opportunity to revolutionize our understanding of life and disease. Interpretation of these data remains, however, a major scientific challenge. Here, we propose a methodology that enables us to extract and display information contained in complex networks. Specifically, we demonstrate that one can (i) find functional modules in complex networks, and (ii) classify nodes into universal roles according to their pattern of intra- and inter-module connections. The method thus yields a ``cartographic representation'' of complex networks. Metabolic networks are among the most challenging biological networks and, arguably, the ones with more potential for immediate applicability. We use our method to analyze the metabolic networks of twelve organisms from three different super-kingdoms. We find that, typically, 80% of the nodes are only connected to other nodes within their respective modules, and that nodes with different roles are affected by different evolutionary constraints and pressures. Remarkably, we find that low-degree metabolites that connect different modules are more conserved than hubs whose links are mostly within a single module.Comment: 17 pages, 4 figures. Go to http://amaral.northwestern.edu for the PDF file of the reprin

    Beyond microarrays: Finding key transcription factors controlling signal transduction pathways

    Get PDF
    BACKGROUND: Massive gene expression changes in different cellular states measured by microarrays, in fact, reflect just an "echo" of real molecular processes in the cells. Transcription factors constitute a class of the regulatory molecules that typically require posttranscriptional modifications or ligand binding in order to exert their function. Therefore, such important functional changes of transcription factors are not directly visible in the microarray experiments. RESULTS: We developed a novel approach to find key transcription factors that may explain concerted expression changes of specific components of the signal transduction network. The approach aims at revealing evidence of positive feedback loops in the signal transduction circuits through activation of pathway-specific transcription factors. We demonstrate that promoters of genes encoding components of many known signal transduction pathways are enriched by binding sites of those transcription factors that are endpoints of the considered pathways. Application of the approach to the microarray gene expression data on TNF-alpha stimulated primary human endothelial cells helped to reveal novel key transcription factors potentially involved in the regulation of the signal transduction pathways of the cells. CONCLUSION: We developed a novel computational approach for revealing key transcription factors by knowledge-based analysis of gene expression data with the help of databases on gene regulatory networks (TRANSFAC(® )and TRANSPATH(®)). The corresponding software and databases are available at

    Prevention of radiochemotherapy-induced toxicity with amifostine in patients with malignant orbital tumors involving the lacrimal gland: a pilot study

    Get PDF
    BACKGROUND: To use amifostine concurrently with radiochemotherapy (CT-RT) or radiotherapy (RT) alone in order to prevent dry eye syndrome in patients with malignancies located in the fronto-orbital region. METHODS: Five patients (2 males, 3 females) with diagnosed malignancies (Non-Hodgkin B-cell Lymphoma, neuroendocrine carcinoma) involving the lacrimal gland, in which either combined CT-RT or local RT were indicated, were prophylactically treated with amifostine (500 mg sc). Single RT fraction dose, total dose and treatment duration were individually adjusted to the patient's need. Acute and late adverse effects were recorded using the RTOG score. Subjective and objective dry eye assessment was performed for the post-treatment control of lacrimal gland function. RESULTS: All patients have completed CT-RT or RT as indicated. The median total duration of RT was 29 days (range, 23 - 39 days) and the median total RT dose was 40 Gy (range, 36 - 60 Gy). Median lacrimal gland exposure was 35.9 Gy (range, 16.8 - 42.6 Gy). Very good partial or complete tumor remission was achieved in all patients. The treatment was well tolerated without major toxic reactions. Post-treatment control did not reveal in any patient either subjective or objective signs of a dry eye syndrome. CONCLUSION: The addition of amifostine to RT/CT-RT of patients with tumors localized in orbital region was found to be associated with absence of dry eye syndrome

    Wide-Scale Analysis of Human Functional Transcription Factor Binding Reveals a Strong Bias towards the Transcription Start Site

    Get PDF
    We introduce a novel method to screen the promoters of a set of genes with shared biological function, against a precompiled library of motifs, and find those motifs which are statistically over-represented in the gene set. The gene sets were obtained from the functional Gene Ontology (GO) classification; for each set and motif we optimized the sequence similarity score threshold, independently for every location window (measured with respect to the TSS), taking into account the location dependent nucleotide heterogeneity along the promoters of the target genes. We performed a high throughput analysis, searching the promoters (from 200bp downstream to 1000bp upstream the TSS), of more than 8000 human and 23,000 mouse genes, for 134 functional Gene Ontology classes and for 412 known DNA motifs. When combined with binding site and location conservation between human and mouse, the method identifies with high probability functional binding sites that regulate groups of biologically related genes. We found many location-sensitive functional binding events and showed that they clustered close to the TSS. Our method and findings were put to several experimental tests. By allowing a "flexible" threshold and combining our functional class and location specific search method with conservation between human and mouse, we are able to identify reliably functional TF binding sites. This is an essential step towards constructing regulatory networks and elucidating the design principles that govern transcriptional regulation of expression. The promoter region proximal to the TSS appears to be of central importance for regulation of transcription in human and mouse, just as it is in bacteria and yeast.Comment: 31 pages, including Supplementary Information and figure

    Analysis of promoter regions of co-expressed genes identified by microarray analysis

    Get PDF
    BACKGROUND: The use of global gene expression profiling to identify sets of genes with similar expression patterns is rapidly becoming a widespread approach for understanding biological processes. A logical and systematic approach to study co-expressed genes is to analyze their promoter sequences to identify transcription factors that may be involved in establishing specific profiles and that may be experimentally investigated. RESULTS: We introduce promoter clustering i.e. grouping of promoters with respect to their high scoring motif content, and show that this approach greatly enhances the identification of common and significant transcription factor binding sites (TFBS) in co-expressed genes. We apply this method to two different dataset, one consisting of micro array data from 108 leukemias (AMLs) and a second from a time series experiment, and show that biologically relevant promoter patterns may be obtained using phylogenetic foot-printing methodology. In addition, we also found that 15% of the analyzed promoter regions contained transcription factors start sites for additional genes transcribed in the opposite direction. CONCLUSION: Promoter clustering based on global promoter features greatly improve the identification of shared TFBS in co-expressed genes. We believe that the outlined approach may be a useful first step to identify transcription factors that contribute to specific features of gene expression profiles

    Evolving network structure of academic institutions

    Get PDF
    Today’s colleges and universities consist of highly complex structures that dictate interactions between the administration, faculty, and student body. These structures can play a role in dictating the efficiency of policy enacted by the administration and determine the effect that curriculum changes in one department have on other departments. Despite the fact that the features of these complex structures have a strong impact on the institutions, they remain by-and-large unknown in many cases. In this paper we study the academic structure of our home institution of Trinity College in Hartford, CT using the major and minor patterns between graduating students to build a temporal multiplex network describing the interactions between different departments. Using recent network science techniques developed for such temporal networks we identify the evolving community structures that organize departments’ interactions, as well as quantify the interdisciplinary centrality of each department. We implement this framework for Trinity College, finding practical insights and applications, but also present it as a general framework for colleges and universities to better understand their own structural makeup in order to better inform academic and administrative policy

    Reproducibility of onset and recovery oxygen uptake kinetics in moderately impaired patients with chronic heart failure

    Get PDF
    Oxygen (O2) kinetics reflect the ability to adapt to or recover from exercise that is indicative of daily life. In patients with chronic heart failure (CHF), parameters of O2 kinetics have shown to be useful for clinical purposes like grading of functional impairment and assessment of prognosis. This study compared the goodness of fit and reproducibility of previously described methods to assess O2 kinetics in these patients. Nineteen CHF patients, New York Heart Association class II–III, performed two constant-load tests on a cycle ergometer at 50% of the maximum workload. Time constants of O2 onset- and recovery kinetics (τ) were calculated by mono-exponential modeling with four different sampling intervals (5 and 10 s, 5 and 8 breaths). The goodness of fit was expressed as the coefficient of determination (R2). Onset kinetics were also evaluated by the mean response time (MRT). Considering O2 onset kinetics, τ showed a significant inverse correlation with peak- \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} \ifmmode\expandafter\dot\else\expandafter\.\fi{V}{\text{O}}_{2} \end{document} (R = −0.88, using 10 s sampling intervals). The limits of agreement of both τ and MRT, however, were not clinically acceptable. O2 recovery kinetics yielded better reproducibility and goodness of fit. Using the most optimal sampling interval (5 breaths), a change of at least 13 s in τ is needed to exceed normal test-to-test variations. In conclusion, O2 recovery kinetics are more reproducible for clinical purposes than O2 onset kinetics in moderately impaired patients with CHF. It should be recognized that this observation cannot be assumed to be generalizable to more severely impaired CHF patients

    Assessment of clusters of transcription factor binding sites in relationship to human promoter, CpG islands and gene expression

    Get PDF
    BACKGROUND: Gene expression is regulated mainly by transcription factors (TFs) that interact with regulatory cis-elements on DNA sequences. To identify functional regulatory elements, computer searching can predict TF binding sites (TFBS) using position weight matrices (PWMs) that represent positional base frequencies of collected experimentally determined TFBS. A disadvantage of this approach is the large output of results for genomic DNA. One strategy to identify genuine TFBS is to utilize local concentrations of predicted TFBS. It is unclear whether there is a general tendency for TFBS to cluster at promoter regions, although this is the case for certain TFBS. Also unclear is the identification of TFs that have TFBS concentrated in promoters and to what level this occurs. This study hopes to answer some of these questions. RESULTS: We developed the cluster score measure to evaluate the correlation between predicted TFBS clusters and promoter sequences for each PWM. Non-promoter sequences were used as a control. Using the cluster score, we identified a PWM group called PWM-PCP, in which TFBS clusters positively correlate with promoters, and another PWM group called PWM-NCP, in which TFBS clusters negatively correlate with promoters. The PWM-PCP group comprises 47% of the 199 vertebrate PWMs, while the PWM-NCP group occupied 11 percent. After reducing the effect of CpG islands (CGI) against the clusters using partial correlation coefficients among three properties (promoter, CGI and predicted TFBS cluster), we identified two PWM groups including those strongly correlated with CGI and those not correlated with CGI. CONCLUSION: Not all PWMs predict TFBS correlated with human promoter sequences. Two main PWM groups were identified: (1) those that show TFBS clustered in promoters associated with CGI, and (2) those that show TFBS clustered in promoters independent of CGI. Assessment of PWM matches will allow more positive interpretation of TFBS in regulatory regions

    Effective transcription factor binding site prediction using a combination of optimization, a genetic algorithm and discriminant analysis to capture distant interactions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reliable transcription factor binding site (TFBS) prediction methods are essential for computer annotation of large amount of genome sequence data. However, current methods to predict TFBSs are hampered by the high false-positive rates that occur when only sequence conservation at the core binding-sites is considered.</p> <p>Results</p> <p>To improve this situation, we have quantified the performance of several Position Weight Matrix (PWM) algorithms, using exhaustive approaches to find their optimal length and position. We applied these approaches to bio-medically important TFBSs involved in the regulation of cell growth and proliferation as well as in inflammatory, immune, and antiviral responses (NF-κB, ISGF3, IRF1, STAT1), obesity and lipid metabolism (PPAR, SREBP, HNF4), regulation of the steroidogenic (SF-1) and cell cycle (E2F) genes expression. We have also gained extra specificity using a method, entitled SiteGA, which takes into account structural interactions within TFBS core and flanking regions, using a genetic algorithm (GA) with a discriminant function of locally positioned dinucleotide (LPD) frequencies.</p> <p>To ensure a higher confidence in our approach, we applied resampling-jackknife and bootstrap tests for the comparison, it appears that, optimized PWM and SiteGA have shown similar recognition performances. Then we applied SiteGA and optimized PWMs (both separately and together) to sequences in the Eukaryotic Promoter Database (EPD). The resulting SiteGA recognition models can now be used to search sequences for BSs using the web tool, SiteGA.</p> <p>Analysis of dependencies between close and distant LPDs revealed by SiteGA models has shown that the most significant correlations are between close LPDs, and are generally located in the core (footprint) region. A greater number of less significant correlations are mainly between distant LPDs, which spanned both core and flanking regions. When SiteGA and optimized PWM models were applied together, this substantially reduced false positives at least at higher stringencies.</p> <p>Conclusion</p> <p>Based on this analysis, SiteGA adds substantial specificity even to optimized PWMs and may be considered for large-scale genome analysis. It adds to the range of techniques available for TFBS prediction, and EPD analysis has led to a list of genes which appear to be regulated by the above TFs.</p
    corecore