39 research outputs found

    Sub-Planckian black holes and the Generalized Uncertainty Principle

    Get PDF
    The Black Hole Uncertainty Principle correspondence suggests that there could exist black holes with mass beneath the Planck scale but radius of order the Compton scale rather than Schwarzschild scale. We present a modified, self-dual Schwarzschild-like metric that reproduces desirable aspects of a variety of disparate models in the sub-Planckian limit, while remaining Schwarzschild in the large mass limit. The self-dual nature of this solution under MM1M \leftrightarrow M^{-1} naturally implies a Generalized Uncertainty Principle with the linear form Δx1Δp+Δp\Delta x \sim \frac{1}{\Delta p} + \Delta p. We also demonstrate a natural dimensional reduction feature, in that the gravitational radius and thermodynamics of sub-Planckian objects resemble that of (1+1)(1+1)-D gravity. The temperature of sub-Planckian black holes scales as MM rather than M1M^{-1} but the evaporation of those smaller than 103610^{-36}g is suppressed by the cosmic background radiation. This suggests that relics of this mass could provide the dark matter.Comment: 12 pages, 9 figures, version published in J. High En. Phy

    The SAMI Galaxy Survey: The cluster redshift survey, target selection and cluster properties

    Get PDF
    We describe the selection of galaxies targeted in eight low redshift clusters (APMCC0917, A168, A4038, EDCC442, A3880, A2399, A119 and A85; 0.029<z<0.0580.029 < z < 0.058) as part of the Sydney-AAO Multi-Object integral field Spectrograph Galaxy Survey (SAMI-GS). We have conducted a redshift survey of these clusters using the AAOmega multi-object spectrograph on the 3.9m Anglo-Australian Telescope. The redshift survey is used to determine cluster membership and to characterise the dynamical properties of the clusters. In combination with existing data, the survey resulted in 21,257 reliable redshift measurements and 2899 confirmed cluster member galaxies. Our redshift catalogue has a high spectroscopic completeness (94%\sim 94\%) for rpetro19.4r_{\rm petro} \leq 19.4 and clustercentric distances R<2R200R< 2\rm{R}_{200}. We use the confirmed cluster member positions and redshifts to determine cluster velocity dispersion, R200\rm{R}_{200}, virial and caustic masses, as well as cluster structure. The clusters have virial masses 14.25log(M200/M)15.1914.25 \leq {\rm log }({\rm M}_{200}/\rm{M}_{\odot}) \leq 15.19. The cluster sample exhibits a range of dynamical states, from relatively relaxed-appearing systems, to clusters with strong indications of merger-related substructure. Aperture- and PSF-matched photometry are derived from SDSS and VST/ATLAS imaging and used to estimate stellar masses. These estimates, in combination with the redshifts, are used to define the input target catalogue for the cluster portion of the SAMI-GS. The primary SAMI-GS cluster targets have R<R200R< \rm{R}_{200}, velocities vpec<3.5σ200|v_{\rm pec}| < 3.5\sigma_{200} and stellar masses 9.5log(Mapprox/M)129.5 \leq {\rm log(M}^*_{approx}/\rm{M}_{\odot}) \leq 12. Finally, we give an update on the SAMI-GS progress for the cluster regions

    Preparing for The Inevitable: Ecological and Indigenous Community Impacts of Oil Spill-Related Mortality in The United States’ Arctic Marine Ecosystem

    No full text
    While hydrocarbon exploration and extraction in the Arctic ebb and flow, reduced sea ice has opened new travel routes across the Arctic. The opening of the Northwest Passage has allowed larger ships (including oil tankers) and higher traffic into remote regions. More ice loss is expected in the future. With this comes the potential for hydrocarbon spills. To quantify the ecosystem impacts of a spill in the Alaska North Slope region, an Ecospace model using the Ecopath with Ecosim software was developed. We highlight the impacts of four potential hydrocarbon contamination scenarios: a subsurface crude oil pipeline release, a surface platform oil spill, a surface cruise ship diesel spill, and a surface tanker oil spill. Hydrocarbon contamination was modeled using SIMAP (Spill Impact Model Analysis Package), which was developed from the oil fate sub-model in the Natural Resource Damage Assessment Model for the US Department of the Interior and under the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). Spatial-temporal SIMAP results were coupled to the Ecospace model. We show that in all four hydrocarbon contamination scenarios, there are spatial changes in harvested species resulting in long-term declines in harvest levels for the communities within the model area (Nuiqsut, Kaktovik, and Barrow Alaska), depending on the severity of the scenario. Responses to hydrocarbon events are likely to be slow in the Arctic, limited by the ice-free season. We highlight this area for scenario testing as ecological impacts are also an issue of food security to the local communities and human health issue

    What is the role and authority of gatekeepers in cluster randomized trials in health research?

    No full text
    <p>Abstract</p> <p>This article is part of a series of papers examining ethical issues in cluster randomized trials (CRTs) in health research. In the introductory paper in this series, we set out six areas of inquiry that must be addressed if the CRT is to be set on a firm ethical foundation. This paper addresses the sixth of the questions posed, namely, what is the role and authority of gatekeepers in CRTs in health research? ‘Gatekeepers’ are individuals or bodies that represent the interests of cluster members, clusters, or organizations. The need for gatekeepers arose in response to the difficulties in obtaining informed consent because of cluster randomization, cluster-level interventions, and cluster size. In this paper, we call for a more restrictive understanding of the role and authority of gatekeepers.</p> <p>Previous papers in this series have provided solutions to the challenges posed by informed consent in CRTs without the need to invoke gatekeepers. We considered that consent to randomization is not required when cluster members are approached for consent at the earliest opportunity and before any study interventions or data-collection procedures have started. Further, when cluster-level interventions or cluster size means that obtaining informed consent is not possible, a waiver of consent may be appropriate. In this paper, we suggest that the role of gatekeepers in protecting individual interests in CRTs should be limited. Generally, gatekeepers do not have the authority to provide proxy consent for cluster members. When a municipality or other community has a legitimate political authority that is empowered to make such decisions, cluster permission may be appropriate; however, gatekeepers may usefully protect cluster interests in other ways. Cluster consultation may ensure that the CRT addresses local health needs, and is conducted in accord with local values and customs. Gatekeepers may also play an important role in protecting the interests of organizations, such as hospitals, nursing homes, general practices, and schools. In these settings, permission to access the organization relies on resource implications and adherence to institutional policies.</p
    corecore