5,714 research outputs found

    A stronger topology for the Brownian web

    Full text link
    We propose a metric space of coalescing pairs of paths on which we are able to prove (more or less) directly convergence of objects such as the persistence probability in the (one dimensional, nearest neighbor, symmetric) voter model or the diffusively rescaled weight distribution in a silo model (as well as the equivalent output distribution in a river basin model), interpreted in terms of (dual) diffusively rescaled coalescing random walks, to corresponding objects defined in terms of the Brownian web.Comment: 22 page

    Development of a species-specific coproantigen ELISA for human taenia solium taeniasis

    Get PDF
    Taenia solium causes human neurocysticercosis and is endemic in underdeveloped countries where backyard pig keeping is common. Microscopic fecal diagnostic methods for human T. solium taeniasis are not very sensitive, and Taenia saginata and Taenia solium eggs are indistinguishable under the light microscope. Coproantigen (CoAg) ELISA methods are very sensitive, but currently only genus (Taenia) specific. This paper describes the development of a highly species-specific coproantigen ELISA test to detect T. solium intestinal taeniasis. Sensitivity was maintained using a capture antibody of rabbit IgG against T. solium adult whole worm somatic extract, whereas species specificity was achieved by utilization of an enzyme-conjugated rabbit IgG against T. solium adult excretory-secretory (ES) antigen. A known panel of positive and negative human fecal samples was tested with this hybrid sandwich ELISA. The ELISA test gave 100% specificity and 96.4% sensitivity for T. solium tapeworm carriers (N = 28), with a J index of 0.96. This simple ELISA incorporating anti-adult somatic and anti-adult ES antibodies provides the first potentially species-specific coproantigen test for human T. solium taeniasis

    Evidence and modeling of turbulence bifurcation in L-mode confinement transitions on Alcator C-Mod

    Get PDF
    © 2020 Author(s). Analysis and modeling of rotation reversal hysteresis experiments show that a single turbulent bifurcation is responsible for the Linear to Saturated Ohmic Confinement (LOC/SOC) transition and concomitant intrinsic rotation reversal on Alcator C-Mod. Plasmas on either side of the reversal exhibit different toroidal rotation profiles and therefore different turbulence characteristics despite the profiles of density and temperature, which are indistinguishable within measurement uncertainty. Elements of this bifurcation are also shown to persist for auxiliary heated L-modes. The deactivation of subdominant (in the linear growth rate and contribution to heat transport) ion temperature gradient and trapped electron mode instabilities is identified as the only possible change in turbulence within a reduced quasilinear transport model across the reversal, which is consistent with the measured profiles and inferred heat and particle fluxes. Experimental constraints on a possible change from strong to weak turbulence, outside the description of the quasilinear model, are also discussed. These results indicate an explanation for the LOC/SOC transition that provides a mechanism for the hysteresis through the dynamics of subdominant modes and changes in their relative populations and does not involve a change in the most linearly unstable ion-scale drift-wave instability

    A composite hydrogel for brain tissue phantoms

    Get PDF
    Synthetic phantoms are valuable tools for training, research and development in traditional and computer aided surgery, but complex organs, such as the brain, are difficult to replicate. Here, we present the development of a new composite hydrogel capable of mimicking the mechanical response of brain tissue under loading. Our results demonstrate how the combination of two different hydrogels, whose synergistic interaction results in a highly tunable blend, produces a hybrid material that closely matches the strongly dynamic and non-linear response of brain tissue. The new synthetic material is inexpensive, simple to prepare, and its constitutive components are both widely available and biocompatible. Our investigation of the properties of this engineered tissue, using both small scale testing and life-sized brain phantoms, shows that it is suitable for reproducing the brain shift phenomenon and brain tissue response to indentation and palpation

    Prevalence of purging at age 16 and associations with negative outcomes among girls in three community-based cohorts.

    Get PDF
    The comorbidity of purging behaviours, such as vomiting, inappropriate use of laxatives, diuretics or slimming medications, has been examined in literature. However, most studies do not include adolescents, individuals who purge in the absence of binge eating, or those purging at subclinical frequency. This study examines the prevalence of purging among 16-year-old girls across three countries and their association with substance use and psychological comorbidity

    Classification tools for carotenoid content estimation in Manihot esculenta via metabolomics and machine learning

    Get PDF
    Cassava genotypes (Manihot esculenta Crantz) with high pro-vitamin A activity have been identified as a strategy to reduce the prevalence of deficiency of this vitamin. The color variability of cassava roots, which can vary from white to red, is related to the presence of several carotenoid pigments. The present study has shown how CIELAB color measurement on cassava roots tissue can be used as a non-destructive and very fast technique to quantify the levels of carotenoids in cassava root samples, avoiding the use of more expensive analytical techniques for compound quantification, such as UV-visible spectrophotometry and the HPLC. For this, we used machine learning techniques, associating the colorimetric data (CIELAB) with the data obtained by UV-vis and HPLC, to obtain models of prediction of carotenoids for this type of biomass. Best values of R2 (above 90%) were observed for the predictive variable TCC determined by UV-vis spectrophotometry. When we tested the machine learning models using the CIELAB values as inputs, for the total carotenoids contents quantified by HPLC, the Partial Least Squares (PLS), Support Vector Machines, and Elastic Net models presented the best values of R2 (above 40%) and Root-Mean-Square Error (RMSE). For the carotenoid quantification by UV-vis spectrophotometry, R2 (around 60%) and RMSE values (around 6.5) are more satisfactory. Ridge regression and Elastic Network showed the best results. It can be concluded that the use colorimetric technique (CIELAB) associated with UV-vis/HPLC and statistical techniques of prognostic analysis through machine learning can predict the content of total carotenoids in these samples, with good precision and accuracy.CAPES -Coordenação de Aperfeiçoamento de Pessoal de Nível Superior(407323/2013-9)info:eu-repo/semantics/publishedVersio

    Ageing memory and glassiness of a driven vortex system

    Full text link
    Many systems in nature, glasses, interfaces and fractures being some examples, cannot equilibrate with their environment, which gives rise to novel and surprising behaviour such as memory effects, ageing and nonlinear dynamics. Unlike their equilibrated counterparts, the dynamics of out-of- equilibrium systems is generally too complex to be captured by simple macroscopic laws. Here we investigate a system that straddles the boundary between glass and crystal: a Bragg glass formed by vortices in a superconductor. We find that the response to an applied force evolves according to a stretched exponential, with the exponent reflecting the deviation from equilibrium. After the force is removed, the system ages with time and its subsequent response time scales linearly with its age (simple ageing), meaning that older systems are slower than younger ones. We show that simple ageing can occur naturally in the presence of sufficient quenched disorder. Moreover, the hierarchical distribution of timescales, arising when chunks of loose vortices cannot move before trapped ones become dislodged, leads to a stretched-exponential response.Comment: 16 pages, 5 figure

    Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation.

    Get PDF
    The normally soluble TAR DNA-binding protein 43 (TDP-43) is found aggregated both in reversible stress granules and in irreversible pathogenic amyloid. In TDP-43, the low-complexity domain (LCD) is believed to be involved in both types of aggregation. To uncover the structural origins of these two modes of β-sheet-rich aggregation, we have determined ten structures of segments of the LCD of human TDP-43. Six of these segments form steric zippers characteristic of the spines of pathogenic amyloid fibrils; four others form LARKS, the labile amyloid-like interactions characteristic of protein hydrogels and proteins found in membraneless organelles, including stress granules. Supporting a hypothetical pathway from reversible to irreversible amyloid aggregation, we found that familial ALS variants of TDP-43 convert LARKS to irreversible aggregates. Our structures suggest how TDP-43 adopts both reversible and irreversible β-sheet aggregates and the role of mutation in the possible transition of reversible to irreversible pathogenic aggregation
    corecore