32 research outputs found

    Simulating Turing Machines with Polarizationless P Systems with Active Membranes

    Get PDF
    We prove that every single-tape deterministic Turing machine working in t(n) t(n) time, for some function t:N→N t:N→N , can be simulated by a uniform family of polarizationless P systems with active membranes. Moreover, this is done without significant slowdown in the working time. Furthermore, if logt(n) log⁡t(n) is space constructible, then the members of the uniform family can be constructed by a family machine that uses O(logt(n)) O(log⁡t(n)) space.Ministerio de Economía y Competitividad TIN2012-3743

    Design Patterns for Efficient Solutions to NP-Complete Problems in Membrane Computing

    Get PDF
    Many variants of P systems have the ability to generate an exponential number of membranes in linear time. This feature has been exploited to elaborate (theoretical) efficient solutions to NP-complete, or even harder, problems. A thorough review of the existent solutions shows the utilization of common techniques and procedures. The abstraction of the latter into design patterns can serve to ease and accelerate the construction of efficient solutions to new hard problems.Ministerio de EconomĂ­a y Competitividad TIN2017-89842-

    The Role of Alpha 6 Integrin in Prostate Cancer Migration and Bone Pain in a Novel Xenograft Model

    Get PDF
    Of the estimated 565,650 people in the U.S. who will die of cancer in 2008, almost all will have metastasis. Breast, prostate, kidney, thyroid and lung cancers metastasize to the bone. Tumor cells reside within the bone using integrin type cell adhesion receptors and elicit incapacitating bone pain and fractures. In particular, metastatic human prostate tumors express and cleave the integrin A6, a receptor for extracellular matrix components of the bone, i.e., laminin 332 and laminin 511. More than 50% of all prostate cancer patients develop severe bone pain during their remaining lifetime. One major goal is to prevent or delay cancer induced bone pain. We used a novel xenograft mouse model to directly determine if bone pain could be prevented by blocking the known cleavage of the A6 integrin adhesion receptor. Human tumor cells expressing either the wildtype or mutated A6 integrin were placed within the living bone matrix and 21 days later, integrin expression was confirmed by RT-PCR, radiographs were collected and behavioral measurements of spontaneous and evoked pain performed. All animals independent of integrin status had indistinguishable tumor burden and developed bone loss 21 days after surgery. A comparison of animals containing the wild type or mutated integrin revealed that tumor cells expressing the mutated integrin resulted in a dramatic decrease in bone loss, unicortical or bicortical fractures and a decrease in the ability of tumor cells to reach the epiphyseal plate of the bone. Further, tumor cells within the bone expressing the integrin mutation prevented cancer induced spontaneous flinching, tactile allodynia, and movement evoked pain. Preventing A6 integrin cleavage on the prostate tumor cell surface decreased the migration of tumor cells within the bone and the onset and degree of bone pain and fractures. These results suggest that strategies for blocking the cleavage of the adhesion receptors on the tumor cell surface can significantly prevent cancer induced bone pain and slow disease progression within the bone. Since integrin cleavage is mediated by Urokinase-type Plasminogen Activator (uPA), further work is warranted to test the efficacy of uPA inhibitors for prevention or delay of cancer induced bone pain

    Simulating Elementary Active Membranes

    No full text
    The decision problems solved in polynomial time by P systems with elementary active membranes are known to include the class ^#. This consists of all the problems solved by polynomial-time deterministic Turing machines with polynomial-time counting oracles. In this paper we prove the reverse inclusion by simulating P systems with this kind of machines: this proves that the two complexity classes coincide, finally solving an open problem by P\u103un on the power of elementary division. The equivalence holds for both uniform and semi-uniform families of P systems, with or without membrane dissolution rules. Furthermore, the inclusion in ^# also holds for the P systems involved in the P conjecture (with elementary division and dissolution but no charges), which improves the previously known upper bound

    Achard Bernard, Carrus Jacqueline, Cohen Jean — Guide mĂ©dical de l'interruption volontaire de la grossesse

    No full text
    G. H. Achard Bernard, Carrus Jacqueline, Cohen Jean — Guide mĂ©dical de l'interruption volontaire de la grossesse. In: Population, 31ᔉ annĂ©e, n°4-5, 1976. pp. 983-984

    Solving QSAT in Sublinear Depth

    No full text
    Among Open image in new window -complete problems, QSAT, or quantified SAT, is one of the most used to show that the class of problems solvable in polynomial time by families of a given variant of P systems includes the whole Open image in new window . However, most solutions require a membrane nesting depth that is linear with respect to the number of variables of the QSAT instance under consideration. While a system of a certain depth is needed, since depth 1 systems only allows to solve problems in Open image in new window , it was until now unclear if a linear depth was, in fact, necessary. Here we use P systems with active membranes with charges, and we provide a construction that proves that QSAT can be solved with a sublinear nesting depth of order /log where n is the number of variables in the quantified formula given as input
    corecore