
Simulating Turing Machines
with Polarizationless P Systems

with Active Membranes

Zsolt Gazdag1, Gábor Kolonits1, and Miguel A. Gutiérrez-Naranjo2

1 Department of Algorithms and Their Applications, Faculty of Informatics,
Eötvös Loránd University, Budapest, Hungary

{gazdagzs,kolomax}@inf.elte.hu
2 Research Group on Natural Computing,

Department of Computer Science and Artificial Intelligence,
University of Sevilla, 41012 Sevilla, Spain

magutier@us.es

Abstract. We prove that every single-tape deterministic Turing machine
working in t(n) time, for some function t : N → N, can be simulated by
a uniform family of polarizationless P systems with active membranes.
Moreover, this is done without significant slowdown in the working time.
Furthermore, if log t(n) is space constructible, then the members of the
uniform family can be constructed by a family machine that uses
O(log t(n)) space.

1 Introduction

The simulation of the behaviour of Turing machines by families of P systems has
a long tradition in Membrane Computing (see, e.g., [1,8,11,13]). The purpose of
such simulations is twofold. On the one hand, they allow to prove new properties
on complexity classes and, on the other hand, they provide constructive proofs
of results which have been proved via indirect methods1.

In this paper, we give a new step on the second research line, by showing
that Turing machines can be simulated efficiently by families of polarizationless
P systems with active membranes. By efficiency we mean that these P systems
can simulate Turing machines without significant slowdown in the working time.
Moreover, the space complexity of the presented P systems is quadratic in the
time complexity of the Turing machine.

The conclusions obtained from such simulations are well-known: the decision
problems solved by Turing machines can also be solved by families of devices in
the corresponding P system models. However, one has to be careful when giving
such simulations. It is well known, for example, that the solution of a decision
problem X belonging to the complexity class P via a polynomially uniform

1 The reader is supposed to be familiar with standard techniques and notations used
in Membrane Computing. For a detailed description see [10].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/157763151?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

family of recognizer P systems is trivial, since the polynomial encoding of the
input can involve the solution of the problem (see [3,7]).

This fact can be generalized to wider situations: the solution of a decision
problem X by a uniform family of P systems Π may be trivial in the following
sense. Let us consider a Turing machine that computes the encoding of the
instances of X (also called the encoding machine). If this machine is powerful
enough to decide if an instance is a positive instance of X or not, then a trivial
P system can be used to send out to the environment the correct answer.

In order to avoid such trivial solutions, the encoding machine and the Turing
machine that computes the members of Π (often called the family machine)
should be reasonably weak. More precisely, if the problem X belongs to a com-
plexity class C, then the family machine and the encoding machine should belong
to a class of Turing machines that can compute only a strict subclass of C
(see [8]).

According to this, to simulate a Turing machine M working in t(n) time, for
some function f : N → N such that log t(n) is space constructible, we will use a
family of P systems whose members can be constructed by a family machine
using O(log t(n)) space. In particular, if t is a polynomial, then the family
machine uses logarithmic space. Moreover, we will use the following function pos
to encode the input words of M : For a given input word w, pos(w) is a multiset
where every letter of w is coupled with its position in w. Furthermore, the posi-
tions of the letters are encoded in binary words. It was discussed in [8] that pos is
computable by deterministic random-access Turing machines using logarithmic
time (in other words, pos is DLOGTIME computable). In this way, there is
no risk that pos can compute a solution of a problem outside of DLOGTIME.
Since DLOGTIME is a rather small complexity class, it follows that we can
use pos safely as the input encoding function during the simulation of M .

The result presented in this paper resembles the one appearing in [1] stating
that every single-tape deterministic Turing machine can be simulated by uni-
form families of P systems with active membranes with a cubic slowdown and
quadratic space overhead. However, this result and ours are not directly compa-
rable, as the constructions in [1] use the polarizations of the membranes, while
our solution does not.

The paper is organized as follows. First of all, we recall some basic definitions
used along the paper. Then, in Section 3, we present the main result. Finally,
we give some concluding remarks in Section 4.

2 Preliminaries

First, we recall some basic concepts used later.

Alphabets, Words, Multisets. An alphabet Σ is a non-empty and finite set of
symbols. The elements of Σ are called letters and Σ∗ denotes the set of all finite
words (or strings) over Σ, including the empty word ε. The length of a word
w ∈ Σ∗ is denoted by l(w). We will use multisets of objects in the membranes

of a P system. As usual, these multisets will be represented by strings over the
object alphabet of the P system.

The set of natural numbers is denoted by N. For i, j ∈ N, [i, j] denotes the set
{i, i + 1, . . . , j} (notice that if j < i, then [i, j] = ∅). For the sake of simplicity,
we will write [n] instead of [1, n]. For a number i ∈ N, b(i) denotes its binary
form and b(N) = {b(i) | i ∈ N}. Given an alphabet Σ, the function pos : Σ∗ →
(Σ × b(N))∗ is defined in the following way. For a word w = a1 . . . an ∈ Σ∗,
where ai ∈ Σ , i ∈ [n], pos(w) := (a1, b(1)) . . . (an, b(n)). If a is the ith letter of
w, then we will also write the ith letter of pos(w) in the form ab(i).

Turing Machines. Turing machines are well known computational devices. In
the following we describe the variant appearing, e.g., in [12]. A (deterministic)
Turing machine is a 7-tuple M = (Q,Σ, Γ, δ, q0, qa, qr) where

– Q is the finite set of states,
– Σ is the input alphabet,
– Γ is the tape alphabet including Σ and a distinguished symbol � �∈ Σ, called

the blank symbol,
– δ : (Q − {qa, qr}) × Γ → Q × Γ × {L,R} is the transition function,
– q0 ∈ Q is the initial state,
– qa ∈ Q is the accepting state,
– qr ∈ Q is the rejecting state.

M works on a single infinite tape that is closed on the left-hand side. During
the computation of M , the tape contains only finitely many non-blank symbols,
and it is blank everywhere else. Let us consider a word w ∈ Σ∗. The initial
configuration of M on w is the configuration where w is placed at the beginning
of the tape, the head points to the first letter of w, and the current state of M is
q0. A configuration step performed by M can be described as follows. If M is in
state p and the head of M reads the symbol X, then M can change its state to
q and write X ′ onto X if and only if δ(p,X) = (q,X ′, d), for some d ∈ {L,R}.
Moreover, if d = R (resp. d = L), then M moves its head one cell to the right
(resp. to the left) (as usual, M can never move the head off the left-hand end
of the tape even if the head points to the first cell and d = L). We say that
M accepts (resp. rejects) w, if M can reach from the initial configuration on
w the accepting state qa (resp. the rejecting state qr). Notice that M can stop
only in these states. The language accepted by M is the set L(M) consisting of
those words in Σ∗ that are accepted by M . It is said that M works in t(n) time
(t : N → N) if, for every word w ∈ Σ∗, w stops on w after at most t(l(w)) steps;
M works using s(n) space (s : N → N) if it uses at most s(n) cells when it is
started on an input word with length n. As usual, if M is a multi-tape Turing
machine and it does not write any symbol on its input tape, then those cells that
are used to hold the input word are not counted when the space complexity of
M is measured2. Let us consider a function f : N → N such that f(n) is at least
2

For the formal definitions of the well known complexity classes concerning Turing
machines (such as L, P, TIME(t(n)) and SPACE(s(n))), the interested reader is
referred to [12].

O(log n). We say that f is space constructible if there is a Turing machine M that
works using O(f(n)) space and M always halts with the unary representation
of f(n) on its tape when started on input 1n.

Recognizer P Systems. A P system is a construct of the form Π =
(Γ,H, μ,w1, . . . , wm, R), where m ≥ 1 (the initial degree of the system); Γ is
the working alphabet of objects; H is a finite set of labels for membranes; μ is a
membrane structure (a rooted tree), consisting of m membranes, labelled with
elements of H; w1, . . . , wm are strings over Γ , describing the initial multisets of
objects placed in the m regions of μ; and R is a finite set of developmental rules.

A P system with input is a tuple (Π,Σ, i0), where Π is a P system with work-
ing alphabet Γ , with m membranes, and initial multisets w1, . . . , wm associated
with them; Σ is an (input) alphabet strictly contained in Γ ; the initial multisets
are over Γ − Σ; and i0 is the label of a distinguished (input) membrane.

We say that Π is a recognizer P system [4,5] if Π is a P system with input
alphabet Σ and working alphabet Γ ; Γ has two designated objects yes and no;
every computation of Π halts and sends out to the environment either yes or
no, but not both, and this is done exactly in the last step of the computation;
and, for a word w ∈ Σ∗, called the input of Π, w can be added to the system
by placing it into the input membrane i0 in the initial configuration.

A P system Π is deterministic if it has only a single computation from its
initial configuration to its unique halting configuration. Π is confluent if every
computation of Π halts and sends out to the environment the same object.
Notice that, by definition, recognizing P systems are confluent.

P Systems with Active Membranes. In this paper, we investigate recognizer
P systems with active membranes [9]. These systems have the following types of
rules. As we are dealing with P systems that do not use the polarizations of the
membranes, we leave out this feature from the definition.

(a) [a → v]h, for h ∈ H, a ∈ Γ, v ∈ Γ ∗

(object evolution rules, associated with membranes and depending on the
label of the membranes, but not directly involving the membranes, in the
sense that the membranes are neither taking part in the application of
these rules nor are they modified by them);

(b) a[]h → [b]h, for h ∈ H, a, b ∈ Γ
(send-in communication rules, sending an object into a membrane, maybe
modified during this process);

(c) [a]h → []hu, for h ∈ H, a ∈ Γ , u ∈ Γ ∗

(send-out communication rules; an object is sent out of the membrane,
maybe modified during this process);

(d) [a]h → u, for h ∈ H, a ∈ Γ , u ∈ Γ ∗

(membrane dissolving rules; in reaction with an object, a membrane can be
dissolved, while the object specified in the rule can be modified);

(e) [a]h → [b]h[c]h, for h ∈ H, a, b, c ∈ Γ
(division rules for elementary membranes; in reaction with an object, the

membrane is divided into two membranes; the object a specified in the rule
is replaced in the two new membranes by (possibly new) objects b and c
respectively, and the remaining objects are duplicated; the new membranes
have the same labels as the divided one).

We note that we use the rules of type (c) and (d) in a slightly generalized way
as we allow here an object a to evolve into an arbitrary string u over Γ . It is
clear, however, that an application of a rule [a]h → []hu (resp. a rule [a]h → u)
can be simulated by applying a rule of the form [a]h → []hb (resp. [a]h → b),
where b ∈ Γ , and an object evolution rule. Thus, the use of these generalized
rules will not speed up the running time of our P systems significantly.

As usual, a P system with active membranes works in a maximally parallel
manner:

– In one step, any object of a membrane that can evolve must evolve, but one
object can be used by only one rule in (a)-(e);

– when some rules in (b)-(e) can be applied to a certain membrane, then one
of them must be applied, but a membrane can be the subject of only one of
these rules during each step.

We will use uniform families of P system to decide a language L ⊆ Σ∗. In
this paper, we follow the notion of uniformity used in [8]. Let E and F be classes
of computable functions. A family Π = (Π(i))i∈N of recognizing P systems is
called (E,F)-uniform if and only if (i) there is a function f ∈ F such that, for
every n ∈ N, Π(n) = f(1n) (i.e., f maps the unary representation of each natural
number to an encoding of the P system processing all the inputs of length n); (ii)
there is a function e ∈ E that maps every word x ∈ Σ∗ to a multiset e(x) = wx

over the input alphabet of Π(l(x)).
An (E,F)-uniform family of P systems Π = (Π(i))i∈N decides a language

L ⊆ Σ∗ if, for every word x ∈ Σ∗, starting Π(l(x)) with wx in its input mem-
brane, Π(l(x)) sends out to the environment yes if and only if x ∈ L. In general,
E and F are well known complexity classes such as P or L.

We say that Π(n) works in t(n) time (t : N → N) if Π(n) halts in at most
t(n) steps, for every input multiset in its input membrane. Next, we adopt the
notion of space complexity for families of recognizer P systems similarly to the
definition appearing in [8] (see also [6]). Let C be a configuration of a P system
Π. The size of C (denoted by |C|) is the sum of the number of membranes and
the total number of objects in C. If C = (C0, . . . , Ck) is a halting computation
of Π, then the space required by C is defined as |C| = max{|C0|, . . . , |Ck|}. The
space required by Π is |Π| = sup{|C| | C is a halting computation of Π}. Let us
note that in this paper the presented P systems will have finitely many different
halting computations. This clearly implies that |Π| ∈ N. Finally, Π(n) works
using s(n) space (s : N → N), if |Π(n)| ≤ s(n), for every input multiset in its
input membrane.

3 The Main Result

In this section we prove the following result:

Theorem 1. Let t : N → N be a function such that log t(n) is space con-
structible and consider a Turing machine M working in t(n) time. Then M
can be simulated by a (DLOGTIME,SPACE(log t(n)))-uniform family ΠM =
(ΠM (i))i∈N of recognizer P systems with the following properties:

– the members of ΠM are polarizationless P systems with active membranes,
without using membrane division rules, and

– for every n ∈ N, ΠM (n) works in O(t(n)) time and in O(t2(n)) space.

The rest of this section is devoted to the proof of this theorem. Let us consider
a Turing machine M = (Q,Σ, Γ, δ, q0, qa, qr) working in t(n) time. We construct
a uniform family of recognizer P systems ΠM = (ΠM (i))i∈N that decides the
language M(L). Assume that Q = {s1, . . . , sm}, for some m ≥ 3, where s1 = q0,
sm−1 = qa and sm = qr. Moreover, Γ = {X1, . . . , Xk} for some k > |Σ|, where
Xk = � is the blank symbol of the working tape.

Before giving the precise construction of ΠM (n), we describe informally some
of its components. As the number of certain components of ΠM (n) will depend
on n, when the family machine that constructs ΠM (n) enumerates these com-
ponents, an efficient representation of numbers depending on n should be used.
Thus, instead of using a number to denote a component of ΠM (n), we will use
the binary form of this number.

As M stops in at most t(n) steps, the segment of the tape of M that is
used during its work consists of at most t(n) cells. This segment of the tape
will be represented by the nested membrane structure appearing on Fig. 1.
Here the first membrane in the skin represents the first cell of the tape, while the
innermost membrane represents the t(n)th one. We will call these membranes
of ΠM (n) tape-membranes. Let us consider a tape-membrane representing the
lth cell of the tape. We call this membrane the lth tape-membrane. Notice that
the lth tape-membrane has label b(l), if l ≤ n, and it has label b(n + 1) other-
wise (we distinguish the indexes of the first n + 1 tape-membranes in order to
ensure that the objects in the input multiset are able to find their corresponding
tape-membranes).

Fig. 1. The membrane structure corresponding to the simulated tape

For every l ∈ [t(n)], the lth tape-membrane contains further membranes:
for every state si (i ∈ [m − 2]), it contains t(n) copies of a membrane with
label si. Such a membrane contains a further elementary membrane with label s′

i.
Moreover, the lth tape-membrane contains a symbol Xj ∈ Γ if and only if the
lth cell of M contains the symbol Xj . Furthermore, if M is in state si and the
head of M points to the lth cell, then an object ↑i is placed into the lth tape-
membrane to represent this information (see Fig. 2 where we assumed that the
head of M points to the third cell).

Fig. 2. The membrane structure of the third tape-membrane

We will see that when ↑i and Xj appear in the lth tape-membrane, then
these objects will dissolve a membrane pair [[]s′

i
]si and introduce new objects

corresponding to the value δ(sj ,Xi). With these new objects ΠM (n) will be able
to maintain its configurations so that finally its current configuration corresponds
to the new configuration of M .

The formal definition of ΠM (n) is as follows. For every n ∈ N, let ΠM (n) :=
(Σ′, Γ ′,H, μ,W,R), where:

– Σ′ := {ab(i) | a ∈ Σ, 1 ≤ i ≤ n}
– Γ ′ := Σ′∪Γ ∪{↑i, ↓i,d| 1 ≤ i ≤ m, d ∈ {L,R}}∪{db(0), . . . , db(2n)}∪{yes, no}
– H := {skin, b(1), . . . , b(n + 1)} ∪ {s1, . . . , sm, s′

1, . . . , s
′
m};

– μ is a nested membrane structure [[[. . . [. . . []b(n+1) . . .]b(n+1) . . .]b(2)]b(1)]skin
(containing t(n)−n membranes with label b(n+1)), such that each membrane
in this structure contains a further membrane structure ν, where ν consists
of t(n) copies of the membrane structure [[]s′

i
]si , for every i ∈ [m − 2]. The

input membrane is []skin;
– W := wskin, wb(1), . . . , wb(n+1), ws1 , . . . , wsm , ws′

1
, . . . , ws′

m
, where

• wskin := ε;
• wb(1) := d0, wb(l) := ε, for every l ∈ [2, n], and wb(n+1) := Xk (i.e.,

wb(n+1) is the blank symbol);
• wsi = ws′

i
:= ε, for every i ∈ [m − 2];

– R is the set of the following rules:
• Rules to set up the initial configuration of M :

(a) ab(i)[]b(l) → [ab(i)]b(l), ab(i)[]b(i) → [a]b(i), for every i ∈ [n] and
l < i;

(b) [db(i) → db(i+1)]1, [db(2n) →↑1]1, for every i ∈ [2n − 1];
• Rules for simulating a configuration step of M :

(c) ↑i []si → [↑i]si , [↑i]si → ε, for every i ∈ [m − 2];
(d) Xj []s′

i
→ [Xj]s′

i
, [Xj]s′

i
→ Xr ↓t,d, for every i ∈ [m − 2], j ∈ [k]

and (Xr, st, d) = δ(si,Xj);
(e) ↓i,R []b(l) → [↑i]b(l), for every i ∈ [m − 2], l ∈ [n + 1];
(f) [↓i,L]b(l) → []b(l) ↑i, [↓i,L]1 → [↑i]1, for every i ∈ [m − 2], l ∈

[2, n + 1];
• Rules for sending out the computed answer to the environment:

(g) [↓m−1,d→ yes]b(l), [↓m,d→ no]b(l), for every l ∈ [n + 1] and d ∈
{L,R};

(h) [yes]b(l) → []b(l)yes, [no]b(l) → []b(l)no, for every l ∈ [n + 1];
(i) [yes]skin → []skinyes, [no]skin → []skinno.

Next, we describe how ΠM (n) simulates the work of M . We will see that
ΠM (n) can set up the initial configuration of M in O(n) steps and that every
configuration step of M can be simulated by the P system performing a constant
number of steps. We distinguish the following three main stages of the simulation:

Stage 1: Setting up the initial configuration of M . Assume that M is provided
with the input word a1a2 . . . an (ai ∈ Σ, i ∈ [n]). Then the input multiset of
ΠM (n) is pos(w). During the first 2n steps, every object ab(i) in the input mul-
tiset finds its corresponding membrane with label b(i). At the last step, ab(i)

evolves to a, as the sub-index b(i) is not needed any more. Meanwhile, in mem-
brane 1 object d0 evolves to object db(2n) and db(2n) evolves to ↑1. After these
steps, the lth tape-membrane of the system contains an object X ∈ Γ if and only
if the lth cell of the tape of M contains X. Moreover, the object ↑1 occurring
in the first tape-membrane represents that M ’s current state is s1 (that is, the
initial state) and that the head of M points to the first cell. Thus, after 2n steps
the configuration of ΠM (n) corresponds to the initial configuration of M .

Stage 2: Simulating a configuration step of M . Assume that M has the configu-
ration appearing in Fig. 3 and that ΠM (n) has the corresponding configuration
appearing in Fig. 4 (for the sake of simplicity we assume that l ∈ [n+1]; the case
when l > l+1 can be treated similarly). The simulation of the computation step
of M starts as follows. Firstly, ↑i goes into a membrane with label si and then
dissolves it using rules in (c). Meanwhile, ↑i evolves to ε. Let us remark that
the system can always find a membrane with label si in the corresponding tape-
membrane. Indeed, at the beginning of the computation, every tape-membrane
contains t(n) copies of a membrane with label si. Moreover, M can perform at
most t(n) steps and the simulation of one step dissolves exactly one membrane
with label si.

Next, Xj goes into the membrane s′
i and then dissolves it. During the dis-

solution two new objects, Xr and ↓t,d are introduced according to the value

Fig. 3. A configuration of M

Fig. 4. The corresponding configuration of ΠM (n)

δ(si,Xj). Notice that in ↓t,d, the index t corresponds to the index of the new
state of M and d denotes the direction of the tape head. Now the simulation
of the corresponding movement of the head is done as follows. According to the
value of d we distinguish the following cases:

Case 1: d = R. In this case ΠM (n) applies rules in (e): ↓t,R is sent into the next
inner tape-membrane and, meanwhile, it evolves to ↑t. This corresponds to the
move of the tape head to the right.

Case 2: d = L. This case is similar to the previous one, but here ΠM (n) applies
rules in (f): ↓t,L is sent out of the current tape-membrane and it evolves to ↑t.
This corresponds to the move of the tape head to the left. Notice that if l = 1,
then ΠM (n) can apply only the second rule in (f) which means that in this case
↑t remains in the first tape-membrane. This still corresponds to the step of M ,
since in this case the head of M cannot move left.

Stage 3: Sending the correct answer to the environment. Whenever an object
↓m−1,d (d ∈ {L,R}) is introduced in a tape-membrane (i.e., when M enters its
accepting state), the system introduces object yes using the first rule in (g).
Then this object is sent out of the tape-membranes until it reaches the skin
membrane using rules in (h). Finally, yes is sent out to the environment using
the first rule in (i). ΠM (n) performs a similar computation concerning object
no.

It can be seen using the notes above that ΠM (n) is a confluent polarization-
less recognizer P system that simulates M correctly. It is also clear that ΠM (n)
does not employ membrane division rules. The other properties of ΠM (n) men-
tioned in Theorem 1 are discussed next.

Time and Space Complexity of ΠM (n). The time complexity of ΠM (n) is
measured as follows. As we already discussed, Stage 1 takes O(n) steps. It can
be seen that the simulation of a step of M takes five steps. Thus, Stage 2 takes
O(t(n)) steps. Finally, Stage 3 takes also O(t(n)) steps. Thus, for every word
x ∈ Σ∗ with length n, starting ΠM (n) with pos(x) in its input membrane, it
halts in O(t(n)) steps.

Concerning the space complexity, a configuration of ΠM (n) contains t(n)
tape-membranes and every tape membrane contains t(n) copies of the membrane
structure [[]s′

i
]si , for every i ∈ [m − 2]. Moreover, every cell of ΠM (n) contains

a constant number of objects. Thus, the space complexity of ΠM (n) is O(t2(n)).

(DLOGTIME,SPACE(log t(n)))-uniformity. We have already discussed
that our input encoding function is in DLOGTIME. Thus, it remains to
describe a deterministic Turing machine F that can construct ΠM (n) using
O(log t(n)) space. It is clear that the objects in Γ ′ and the rules of ΠM (n) can
be enumerated by F using O(log n) cells. Indeed, Γ ′ contains O(mn) objects,
but m here is a constant that depends only on M . Moreover, ΠM (n) has O(n)
different rules.

Furthermore, as log t(n) is space constructible, F can construct log t(n) in
unary form using O(log t(n)) space. Using the unary representation of log t(n),
the initial membrane structure of ΠM (n) can be constructed by F as follows:
when F constructs the lth tape-membrane, then it stores b(l) on one of its
tapes using at most log t(n) cells. Furthermore, when F constructs the kth
membrane structure of the form [[]s′

i
]si (k ∈ [t(n)], i ∈ [m − 2]) in the lth

tape-membrane, then it stores the words b(k) and b(i) on one of its tapes. This
also needs O(log t(n)) cells. Thus, the total number of cells used on the work
tapes of F when it constructs ΠM (n) is O(log t(n)).

4 Conclusions

The simulation of the behaviour of a device of a computation model in a different
model allows to see all problems from a new point of view. One of the frontiers of
the current research in Membrane Computing corresponds to the computational
power of P systems according to the power of the function that encodes the
input and the function that constructs the family of P systems.

In this paper, we prove a general result in this line, since we show that every
single-tape deterministic Turing machine working in t(n) time can be simulated
by a uniform family of recognizer polarizationless P systems with active mem-
branes. Moreover, this is done without significant slowdown in the working time.
Furthermore, if log t(n) is space constructible, then the members of the family

can be constructed by a family machine that uses O(log t(n)) space. As a partic-
ular case, this means that if t(n) is a polynomial function, then the used family
of P systems is (DLOGTIME,L)-uniform. Likewise, if t(n) is an exponential
function, then the used family is (DLOGTIME,PSPACE)-uniform.

As it is pointed out in [2], uniform families of polarizationless P systems
with active membranes and without dissolution rules are at most as powerful
as the used input encoding function (see Theorem 10 in [2]). This fact, together
with the result of this paper, illustrates the importance of dissolution rules in
P systems with active membranes when the polarizations of the membranes are
not allowed.

It remains as an open question if (DLOGTIME,SPACE(log t(n)))-
uniformity in Theorem 1 can be strengthened to (DLOGTIME,L)-uniformity
(i.e., whether the construction of ΠM can be done using logarithmic space what-
ever the running time of M is). In our construction membrane division rules are
not employed. Nevertheless, even if we used these rules, it is not clear how the
tape-membranes or the membrane structures occurring in them could be con-
structed using logarithmic space. This might be a subject of further research.

Acknowledgements. Miguel A. Gutiérrez–Naranjo acknowledges the support of the
project TIN2012-37434 of the Ministerio de Economı́a y Competitividad of Spain.

References

1. Alhazov, A., Leporati, A., Mauri, G., Porreca, A.E., Zandron, C.: Space complexity
equivalence of P systems with active membranes and Turing machines. Theoretical
Compuer Science 529, 69–81 (2014)

2. Murphy, N., Woods, D.: The computational complexity of uniformity and semi-
uniformity in membrane systems. In: Mart́ınez-del-Amor, M.A., Orejuela-Pinedo,
E.F., Păun, Gh., Pérez-Hurtado, I., Riscos-Núñez, A. (eds.) Seventh Brainstorming
Week on Membrane Computing, vol. II, pp. 73–84. Fénix Editora, Sevilla (2009)

3. Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-Jiménez, A., Woods, D.: Com-
plexity - membrane division, membrane creation. In: Păun et al. [10], pp. 302–336

4. Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: A polynomial
complexity class in P systems using membrane division. In: Csuhaj-Varjú, E.,
Kintala, C., Wotschke, D., Vaszil, Gy. (eds.) Proceeding of the 5th Workshop on
Descriptional Complexity of Formal Systems, DCFS 2003, pp. 284–294 (2003)

5. Pérez-Jiménez, M.J., Romero-Jiménez, Á., Sancho-Caparrini, F.: A polynomial
complexity class in P systems using membrane division. Journal of Automata,
Languages and Combinatorics 11(4), 423–434 (2006)

6. Porreca, A., Leporati, A., Mauri, G., Zandron, C.: Introducing a space complexity
measure for P systems. International Journal of Computers, Communications and
Control 4(3), 301–310 (2009)

7. Porreca, A.E.: Computational Complexity Classes for Membrane System. Master’s
thesis, Universitá di Milano-Bicocca, Italy (2008)

8. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: Sublinear-space P systems
with active membranes. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G.,
Salomaa, A., Vaszil, Gy. (eds.) CMC 2012. LNCS, vol. 7762, pp. 342–357. Springer,
Heidelberg (2013)

9. Păun, Gh.: P systems with active membranes: Attacking NP-complete problems.
Journal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)

10. Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press, Oxford (2010)

11. Romero Jiménez, A., Pérez-Jiménez, M.J.: Simulating Turing machines by P sys-
tems with external output. Fundamenta Informaticae 49(1–3), 273–278 (2002)

12. Sipser, M.: Introduction to the Theory of Computation. Cengage Learning (2012)
13. Valsecchi, A., Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: An efficient sim-

ulation of polynomial-space Turing machines by P systems with active membranes.
In: Păun, Gh., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa,
A. (eds.) WMC 2009. LNCS, vol. 5957, pp. 461–478. Springer, Heidelberg (2010)

	Simulating Turing Machines with Polarizationless P Systems with Active Membranes
	1 Introduction
	2 Preliminaries
	3 The Main Result
	4 Conclusions
	References

