8 research outputs found

    Evaluation of machine-learning methods for ligand-based virtual screening

    Get PDF
    Machine-learning methods can be used for virtual screening by analysing the structural characteristics of molecules of known (in)activity, and we here discuss the use of kernel discrimination and naive Bayesian classifier (NBC) methods for this purpose. We report a kernel method that allows the processing of molecules represented by binary, integer and real-valued descriptors, and show that it is little different in screening performance from a previously described kernel that had been developed specifically for the analysis of binary fingerprint representations of molecular structure. We then evaluate the performance of an NBC when the training-set contains only a very few active molecules. In such cases, a simpler approach based on group fusion would appear to provide superior screening performance, especially when structurally heterogeneous datasets are to be processed

    Similarity searching using 2D structural fingerprints

    No full text
    This chapter reviews the use of molecular fingerprints for chemical similarity searching. The fingerprints encode the presence of 2D substructural fragments in a molecule, and the similarity between a pair of molecules is a function of the number of fragments that they have in common. Although this provides a very simple way of estimating the degree of structural similarity between two molecules, it has been found to provide an effective and an efficient tool for searching large chemical databases. The review describes the historical development of similarity searching since it was first described in the mid-1980s, reviews the many different coefficients, representations, and weightings that can be combined to form a similarity measure, describes quantitative measures of the effectiveness of similarity searching, and concludes by looking at current developments based on the use of data fusion and machine learning techniques
    corecore