20 research outputs found

    Controls on gut phosphatisation : the trilobites from the Weeks Formation Lagerstätte (Cambrian; Utah)

    Get PDF
    Despite being internal organs, digestive structures are frequently preserved in Cambrian Lagerstätten. However, the reasons for their fossilisation and their biological implications remain to be thoroughly explored. This is particularly true with arthropods--typically the most diverse fossilised organisms in Cambrian ecosystems--where digestive structures represent an as-yet underexploited alternative to appendage morphology for inferences on their biology. Here we describe the phosphatised digestive structures of three trilobite species from the Cambrian Weeks Formation Lagerstätte (Utah). Their exquisite, three-dimensional preservation reveals unique details on trilobite internal anatomy, such as the position of the mouth and the absence of a differentiated crop. In addition, the presence of paired pygidial organs of an unknown function is reported for the first time. This exceptional material enables exploration of the relationships between gut phosphatisation and the biology of organisms. Indeed, soft-tissue preservation is unusual in these fossils as it is restricted to the digestive structures, which indicates that the gut played a central role in its own phosphatisation. We hypothesize that the gut provided a microenvironment where special conditions could develop and harboured a source of phosphorus. The fact that gut phosphatization has almost exclusively been observed in arthropods could be explained by their uncommon ability to store ions (including phosphorous) in their digestive tissues. However, in some specimens from the Weeks Formation, the phosphatisation extends to the entire digestive system, suggesting that trilobites might have had some biological particularities not observed in modern arthropods. We speculate that one of them might have been an increased capacity for ion storage in the gut tissues, related to the moulting of their heavily-mineralised carapace

    Characterization of the dnaG locus in Mycobacterium smegmatis reveals linkage of DNA replication and cell division

    No full text
    We have isolated a UV-induced temperature-sensitive mutant of Mycobacterium smegmatis that fails to grow at 42°C and exhibits a filamentous phenotype following incubation at the nonpermissive temperature, reminiscent of a defect in cell division. Complementation of this mutant with an M. smegmatis genomic library and subsequent subcloning reveal that the defect lies within the M. smegmatis dnaG gene encoding DNA primase. Sequence analysis of the mutant dnaG allele reveals a substitution of proline for alanine at position 496. Thus, dnaG is an essential gene in M. smegmatis, and DNA replication and cell division are coupled processes in this species. Characterization of the sequences flanking the M. smegmatis dnaG gene shows that it is not part of the highly conserved macromolecular synthesis operon present in other eubacterial species but is part of an operon with a dgt gene encoding dGTPase. The organization of this operon is conserved in Mycobacterium tuberculosis and Mycobacterium leprae, suggesting that regulation of DNA replication, transcription, and translation may be coordinated differently in the mycobacteria than in other bacteria

    An Intelligent Listening Framework for Capturing Encounter Notes from a Doctor-Patient Dialog

    Get PDF
    Background: Capturing accurate and machine-interpretable primary data from clinical encounters is a challenging task, yet critical to the integrity of the practice of medicine. We explore the intriguing possibility that technology can help accurately capture structured data from the clinical encounter using a combination of automated speech recognition (ASR) systems and tools for extraction of clinical meaning from narrative medical text. Our goal is to produce a displayed evolving encounter note, visible and editable (using speech) during the encounter. Results: This is very ambitious, and so far we have taken only the most preliminary steps. We report a simple proof-of-concept system and the design of the more comprehensive one we are building, discussing both the engineering design and challenges encountered. Without a formal evaluation, we were encouraged by our initial results. The proof-of-concept, despite a few false positives, correctly recognized the proper category of single-and multi-word phrases in uncorrected ASR output. The more comprehensive system captures and transcribes speech and stores alternative phrase interpretations in an XML-based format used by a text-engineering framework. It does not yet use the framework to perform the language processing present in the proof-of-concept. Conclusion: The work here encouraged us that the goal is reachable, so we conclude with proposed next steps. Some challenging steps include acquiring a corpus of doctor-patient conversations, exploring a workable microphone setup, performing user interface research, and developing a multi-speaker version of our tools.National Library of Medicine (U.S.) (grant T15 LM07117)National Library of Medicine (U.S.) (grant R01 LM009723-01A1

    Sophisticated digestive systems in early arthropods

    No full text
    Understanding the way in which animals diversified and radiated during their early evolutionary history remains one of the most captivating of scientific challenges. Integral to this is the 'Cambrian explosion', which records the rapid emergence of most animal phyla, and for which the triggering and accelerating factors, whether environmental or biological, are still unclear. Here we describe exceptionally well-preserved complex digestive organs in early arthropods from the early Cambrian of China and Greenland with functional similarities to certain modern crustaceans and trace these structures through the early evolutionary lineage of fossil arthropods. These digestive structures are assumed to have allowed for more efficient digestion and metabolism, promoting carnivory and macrophagy in early arthropods via predation or scavenging. This key innovation may have been of critical importance in the radiation and ecological success of Arthropoda, which has been the most diverse and abundant invertebrate phylum since the Cambrian. © 2014 Macmillan Publishers Limited.</p
    corecore