39 research outputs found

    Prospective, randomized evaluation of a personal digital assistant-based research tool in the emergency department

    Get PDF
    Background Personal digital assistants (PDA) offer putative advantages over paper for collecting research data. However, there are no data prospectively comparing PDA and paper in the emergency department. The aim of this study was to prospectively compare the performance of PDA and paper enrollment instruments with respect to time required and errors generated. Methods We randomized consecutive patients enrolled in an ongoing prospective study to having their data recorded either on a PDA or a paper data collection instrument. For each method, we recorded the total time required for enrollment, and the time required for manual transcription (paper) onto a computer database. We compared data error rates by examining missing data, nonsensical data, and errors made during the transcription of paper forms. Statistical comparisons were performed by Kruskal-Wallis and Poisson regression analyses for time and errors, respectively. Results We enrolled 68 patients (37 PDA, 31 paper). Two of 31 paper forms were not available for analysis. Total data gathering times, inclusive of transcription, were significantly less for PDA (6:13 min per patient) compared to paper (9:12 min per patient; p < 0.001). There were a total of 0.9 missing and nonsense errors per paper form compared to 0.2 errors per PDA form (p < 0.001). An additional 0.7 errors per paper form were generated during transcription. In total, there were 1.6 errors per paper form and 0.2 errors per PDA form (p < 0.001). Conclusion Using a PDA-based data collection instrument for clinical research reduces the time required for data gathering and significantly improves data integrity

    Bright Field Microscopy as an Alternative to Whole Cell Fluorescence in Automated Analysis of Macrophage Images

    Get PDF
    Fluorescence microscopy is the standard tool for detection and analysis of cellular phenomena. This technique, however, has a number of drawbacks such as the limited number of available fluorescent channels in microscopes, overlapping excitation and emission spectra of the stains, and phototoxicity.We here present and validate a method to automatically detect cell population outlines directly from bright field images. By imaging samples with several focus levels forming a bright field -stack, and by measuring the intensity variations of this stack over the -dimension, we construct a new two dimensional projection image of increased contrast. With additional information for locations of each cell, such as stained nuclei, this bright field projection image can be used instead of whole cell fluorescence to locate borders of individual cells, separating touching cells, and enabling single cell analysis. Using the popular CellProfiler freeware cell image analysis software mainly targeted for fluorescence microscopy, we validate our method by automatically segmenting low contrast and rather complex shaped murine macrophage cells.The proposed approach frees up a fluorescence channel, which can be used for subcellular studies. It also facilitates cell shape measurement in experiments where whole cell fluorescent staining is either not available, or is dependent on a particular experimental condition. We show that whole cell area detection results using our projected bright field images match closely to the standard approach where cell areas are localized using fluorescence, and conclude that the high contrast bright field projection image can directly replace one fluorescent channel in whole cell quantification. Matlab code for calculating the projections can be downloaded from the supplementary site: http://sites.google.com/site/brightfieldorstaining

    Combined autologous chondrocyte implantation (ACI) with supra-condylar femoral varus osteotomy, following lateral growth-plate damage in an adolescent knee: 8-year follow-up

    Get PDF
    We report the 8-year clinical and radiographic outcome of an adolescent patient with a large osteochondral defect of the lateral femoral condyle, and ipsilateral genu valgum secondary to an epiphyseal injury, managed with autologous chondrocyte implantation (ACI) and supracondylar re-alignment femoral osteotomy. Long-term clinical success was achieved using this method, illustrating the effective use of re-alignment osteotomy in correcting mal-alignment of the knee, protecting the ACI graft site and providing the optimum environment for cartilage repair and regeneration. This is the first report of the combined use of ACI and femoral osteotomy for such a case

    New Volleyballenes: Y20C60 and La20C60

    No full text
    corecore