9 research outputs found

    A Buoyancy-Based Screen of Drosophila Larvae for Fat-Storage Mutants Reveals a Role for Sir2 in Coupling Fat Storage to Nutrient Availability

    Get PDF
    Obesity has a strong genetic component, but few of the genes that predispose to obesity are known. Genetic screens in invertebrates have the potential to identify genes and pathways that regulate the levels of stored fat, many of which are likely to be conserved in humans. To facilitate such screens, we have developed a simple buoyancy-based screening method for identifying mutant Drosophila larvae with increased levels of stored fat. Using this approach, we have identified 66 genes that when mutated increase organismal fat levels. Among these was a sirtuin family member, Sir2. Sirtuins regulate the storage and metabolism of carbohydrates and lipids by deacetylating key regulatory proteins. However, since mammalian sirtuins function in many tissues in different ways, it has been difficult to define their role in energy homeostasis accurately under normal feeding conditions. We show that knockdown of Sir2 in the larval fat body results in increased fat levels. Moreover, using genetic mosaics, we demonstrate that Sir2 restricts fat accumulation in individual cells of the fat body in a cell-autonomous manner. Consistent with this function, changes in the expression of metabolic enzymes in Sir2 mutants point to a shift away from catabolism. Surprisingly, although Sir2 is typically upregulated under conditions of starvation, Sir2 mutant larvae survive better than wild type under conditions of amino-acid starvation as long as sugars are provided. Our findings point to a Sir2-mediated pathway that activates a catabolic response to amino-acid starvation irrespective of the sugar content of the diet

    Ance,a Drosophila angiotensin-converting enzyme homologue, is expressed in imaginal cells during metamorphosis and is regulated by the steroid, 20-hydroxy ecdysone

    No full text
    Ance is a single domain homologue of mammalian angiotensin-converting enzyme (ACE) and is important for normal development and reproduction in Drosophila melanogaster. Mammalian ACE is responsible for the synthesis of angiotensin II and the inactivation of bradykinin and N-acetyl-Ser-Asp-Lys-Pro, but the absence of similar peptide hormones in insects suggests novel functions for Ance. We now provide evidence in support of a role for Ance during Drosophila metamorphosis. The transition of larva to pupa was accompanied by a 3-fold increase in ACE-like activity, which subsequently dropped to larval levels on adult eclosion. This increase was attributed to the induction of Ance expression during the wandering phase of the last larval instar in the imaginal cells (imaginal discs, abdominal histoblasts, gut imaginal cells and imaginal salivary gland). Ance expression was particularly strong in the presumptive adult midgut formed as a result of massive proliferation of the imaginal midgut cells soon after pupariation. No Ance transcripts were detected in the midgut of the fully differentiated adult intestine. Ance protein and mRNA were not detected in imaginal discs from wandering larvae of flies homozygous for the ecd(1) allele, a temperature-sensitive ecdysone-less mutant, suggesting that Ance expression is ecdysteroid-dependent. Physiological levels of 20-hydroxyecdysone induced the synthesis of ACE-like activity and Ance protein by a wing disc cell line (C1.8+), confirming that Ance is an ecdysteroid-responsive gene. We propose that the expression of Ance in imaginal cells is co-ordinated by exposure to ecdysteroid (moulting hormone) during the last larval instar moult to increase levels of ACE-like activity during metamorphosis. The enzyme activity may be required for the processing of a developmental peptide hormone or may function in concert with other peptidases to provide amino acids for the synthesis of adult proteins.</p
    corecore