11 research outputs found

    Experimental and Theoretical Evaluation of the Stability of True MOF Polymorphs Explains Their Mechanochemical Interconversions.

    Get PDF
    We provide the first combined experimental and theoretical evaluation of how differences in ligand structure and framework topology affect the relative stabilities of isocompositional (i.e., true polymorph) metal-organic frameworks (MOFs). We used solution calorimetry and periodic DFT calculations to analyze the thermodynamics of two families of topologically distinct polymorphs of zinc zeolitic imidazolate frameworks (ZIFs) based on 2-methyl- and 2-ethylimidazolate linkers, demonstrating a correlation between measured thermodynamic stability and density, and a pronounced effect of the ligand substituent on their stability. The results show that mechanochemical syntheses and transformations of ZIFs are consistent with Ostwald's rule of stages and proceed toward thermodynamically increasingly stable, more dense phases.Support for calorimetry was provided by the U.S. Department of Energy, Grant DE-SC0016573. We acknowledge the financial support of the NSERC Strategic Grant STPGP 463405-14. A.D.K. acknowledges support by the FRQNT Postdoctoral Scholarship. We are grateful for computational support from the UK national high performance computing service, ARCHER, for which access was obtained via the UKCP consortium and funded by EPSRC Grant Ref EP/K013564/1

    Ab Initio Prediction of Metal-Organic Framework Structures

    No full text
    Metal-organic frameworks (MOFs) have emerged as highly versatile materials with applications in gas storage and separation, solar light energy harvesting and photocatalysis. The design of new MOFs, however, has been hampered by the lack of computational methods for ab initio MOF structure prediction, which could be used to inspire and direct experimental synthesis. Here, we report the first ab initio method for the prediction of MOF structures and test it against a diverse set of known MOFs that were chosen for their differences in topology, metal coordination geometry, and ligand binding sites. In all cases, our calculations produced structures that match experiment using only the target composition and ligand molecular structure, proving the versatility of our procedure. The herein presented methodology utilizes the point group symmetry of ligands to enable, for the first time, prediction of MOF structures from first principles, without having to resort to empirical guidelines based on rigid connectivity of nodes and linkers, or to previously determined crystal structures and topologies of known MOFs. This advance provides the first tool to change MOF design from an empirically based process that is based on chemistÊs intuition rooted in literature-or database-established knowledge of node-and-linker connectivity to a more general and theory-driven materials development. This ab initio MOF structure prediction approach, which is here validated on a range of known MOF classes, provides a unique opportunity to explore the phase landscape of MOFs computationally and enables MOF research and development even in case of limited access to laboratory resources, as for example in case of a global pandemic

    Hybrid glasses:From metal organic frameworks and co-ordination polymers to hybrid organic inorganic pero vskites

    No full text
    corecore