2,045 research outputs found

    Corals on seamounts

    Get PDF

    On the use of radon for quantifying the effects of atmospheric stability on urban emissions

    Get PDF
    Radon is increasingly being used as a tool for quantifying stability influences on urban pollutant concentrations. Bulk radon gradients are ideal for this purpose, since the vertical differencing substantially removes contributions from processes on timescales greater than diurnal and (assuming a constant radon source) gradients are directly related to the intensity of nocturnal mixing. More commonly, however, radon measurements are available only at a single height. In this study we argue that single-height radon observations should not be used quantitatively as an indicator of atmospheric stability without prior conditioning of the time series to remove contributions from larger-scale "non-local" processes. We outline a simple technique to obtain an approximation of the diurnal radon gradient signal from a single-height measurement time series, and use it to derive a four category classification scheme for atmospheric stability on a "whole night" basis. A selection of climatological and pollution observations in the Sydney region are then subdivided according to the radon-based scheme on an annual and seasonal basis. We compare the radon-based scheme against a commonly used Pasquill–Gifford (P–G) type stability classification and reveal that the most stable category in the P–G scheme is less selective of the strongly stable nights than the radon-based scheme; this lead to significant underestimation of pollutant concentrations on the most stable nights by the P–G scheme. Lastly, we applied the radon-based classification scheme to mixing height estimates calculated from the diurnal radon accumulation time series, which provided insight to the range of nocturnal mixing depths expected at the site for each of the stability classes. © 2015, Author(s)

    Map of radon flux at the Australian land surface.

    Get PDF
    A time-dependent map of radon-222 flux density at the Australian land surface has been constructed with a spatial resolution of 0.05° and temporal resolution of one month. Radon flux density was calculated from a simple model utilising data from national gamma-ray aerial surveys, modelled soil moisture, and maps of soil properties. The model was calibrated against a large data set of accumulation-chamber measurements, thereby constraining it with experimental data. A notable application of the map is in atmospheric mixing and transport studies which use radon as a tracer, where it is a clear improvement on the common assumption of uniform radon flux density. © Author(s) 201

    Improved mixing height monitoring through a combination of lidar and radon measurements

    Get PDF
    Surface-based radon (222Rn) measurements can be combined with lidar backscatter to obtain a higher quality time series of mixing height within the planetary boundary layer (PBL) than is possible from lidar alone, and a more quantitative measure of mixing height than is possible from only radon. The reason why lidar measurements are improved is that there are times when lidar signals are ambiguous, and reliably attributing the mixing height to the correct aerosol layer presents a challenge. By combining lidar with a mixing length scale derived from a time series of radon concentration, automated and robust attribution is possible during the morning transition. Radon measurements provide mixing information during the night, but concentrations also depend on the strength of surface emissions. After processing radon in combination with lidar, we obtain nightly measurements of radon emissions and are able to normalise the mixing length scale for changing emissions. After calibration with lidar, the radonderived equivalent mixing height agrees with other measures of mixing on daily and hourly timescales and is a potential method for studying intermittent mixing in nocturnal boundary layers.© 2013, Copernicus Publications

    Particulate pollution in the Sydney Region: source diagnostics and synoptic controls

    Get PDF
    Airborne particulate matter (PM2.5) was sampled at Richmond and Liverpool, located in the Sydney Basin, Australia, and ion beam analysis was used to obtain the elemental composition. Using self-organising maps to classify synoptic weather systems, it was found that high PM2.5 concentrations were associated with high pressure systems located to the east of the sampling sites. The highest median sulfur was associated with weak synoptic conditions and high soil dust days were more often associated with frontal systems. To investigate the effect of local flows in the Sydney Basin, the Weather Research and Forecasting model (WRF) was used to generate meteorological data of 12 km resolution. A comparison was made between back trajectories generated using the higher-resolution WRF data, the 0.5° by 0.5° Climate Forecast System data and the 1° by 1° Global Data Assimilation System data. It was found that for high soil dust days, there were small differences between the different back trajectories. However, under weak synoptic conditions (high sulfur days), the back trajectories generated from higher resolution data showed larger variations over a 24 hr period. This was attributed to the meandering of local winds and seabreezes. Lower altitude back trajectories, generated from low resolution data, passed more often over the power stations located on the western side of the Great Dividing Range (while the sampling sites are on the east). This demonstrates the need for higher resolution meteorological data for generating low altitude back trajectories when the source and receptor are separated by hilly terrain. In estimating the number of high sulfur days for which a power station was crossed, there was up to 20% difference at Liverpool and up to 10% difference at Richmond, between back trajectories starting at different altitudes and generated from meteorological data of three different resolutions

    Characterising terrestrial influences on Antarctic air masses using Radon-222 measurements at King George Island

    Get PDF
    We report on one year of high-precision direct hourly radon observations at King Sejong Station (King George Island) beginning in February 2013. Findings are compared with historic and ongoing radon measurements from other Antarctic sites. Monthly median concentrations reduced from 72 mBq m−3 in late-summer to 44 mBq m−3 in late winter and early spring. Monthly 10th percentiles, ranging from 29 to 49 mBq m−3, were typical of oceanic baseline values. Diurnal cycles were rarely evident and local influences were minor, consistent with regional radon flux estimates one tenth of the global average for ice-free land. The predominant fetch region for terrestrially influenced air masses was South America (47–53° S), with minor influences also attributed to aged Australian air masses and local sources. Plume dilution factors of 2.8–4.0 were estimated for the most terrestrially influenced (South American) air masses, and a seasonal cycle in terrestrial influence on tropospheric air descending at the pole was identified and characterised. © Author(s) 201

    Using radon-222 to distinguish between vertical transport processes at Jungfraujoch

    Get PDF
    Trace gases measured at Jungfrajoch, a key baseline monitoring station in the Swiss Alps, are tranported from the surface to the alpine ridge by several different processes. On clear days with weak synoptic forcing, thermally-driven upslope mountain winds (anabatic winds) are prevalent. Using hourly radon–222 observations, which are often used to identify air of terrestrial origin, we used the shape of the diurnal cycle to sort days according to the strength of anabatic winds. Radon is ideal as an airmass tracer because it is emitted from soil at a relatively constant rate, it is chemically inert, and decays with a half-life of 3.8 days. Because of its short half-life, radon concentrations are much lower in the free troposphere than in boundary-layer air over land. For comparable radon concentrations, anabatic wind days at Jungfraujoch are different from non-anabatic days in terms of the average wind speed, humidity, air temperature anomalies, and trace species. As a consequence, future studies could be devised which focus on a subset of days, e.g. by excluding anabatic days, with the intention of choosing a set of days which can be more accurately simulated by a transport model. © Author(s) 2014

    Constraining annual and seasonal radon-222 flux density from the Southern Ocean using radon-222 concentrations in the boundary layer at Cape Grim

    Get PDF
    Radon concentrations measured between 2001 and 2008 in marine air at Cape Grim, a baseline site in northwestern Tasmania, are used to constrain the radon flux density from the Southern Ocean. A method is described for selecting hourly radon concentrations that are least perturbed by land emissions and dilution by the free troposphere. The distribution of subsequent radon flux density estimates is representative of a large area of the Southern Ocean, an important fetch region for Southern Hemisphere climate and air pollution studies. The annual mean flux density (0.27 mBq m 2 s 1) compares well with the mean of the limited number of spot measurements previously conducted in the Southern Ocean (0.24 mBq m 2 s 1), and to some spot measurements made in other oceanic regions. However, a number of spot measurements in other oceanic regions, as well as most oceanic radon flux density values assumed for modelling studies and intercomparisons, are considerably lower than the mean reported here. The reported radon flux varies with seasons and, in summer, with latitude. It also shows a quadratic dependence on wind speed and significant wave height, as postulated and measured by others, which seems to support our assumption that the selected least perturbed radon concentrations were in equilibrium with the oceanic radon source. By comparing the least perturbed radon observations in 2002 2003 with corresponding ‘TransCom’ model intercomparison results, the best agreement is found when assuming a normally distributed radon flux density with s 0.075 mBq m 2 s 1. © 2013, W. Zahorowski et al

    The vertical distribution of radon in clear and cloudy daytime terrestrial boundary layers

    Get PDF
    Radon ((222)Rn) is a powerful natural tracer of mixing and exchange processes in the atmospheric boundary layer. The authors present and discuss the main features of a unique dataset of 50 high-resolution vertical radon profiles up to 3500 m above ground level, obtained in clear and cloudy daytime terrestrial boundary layers over an inland rural site in Australia using an instrumented motorized research glider. It is demonstrated that boundary layer radon profiles frequently exhibit a complex layered structure as a result of mixing and exchange processes of varying strengths and extents working in clear and cloudy conditions within the context of the diurnal cycle and the synoptic meteorology. Normalized aircraft radon measurements are presented, revealing the characteristic structure and variability of three major classes of daytime boundary layer: 1) dry convective boundary layers, 2) mixed layers topped with residual layers, and 3) convective boundary layers topped with coupled nonprecipitating clouds. Robust and unambiguous signatures of important atmospheric processes in the boundary layer are identifiable in the radon profiles, including "top-down" mixing associated with entrainment in clear-sky cases and strongly enhanced venting and subcloud-layer mixing when substantial active cumulus are present. In poorly mixed conditions, radon gradients in the daytime atmospheric surface layer significantly exceed those predicted by Monin-Obukhov similarity theory. In two case studies, it is demonstrated for the first time that a sequence of vertical radon profiles measured over the course of a single day can consistently reproduce major structural features of the evolving boundary layer.© 2011, American Meteorological Society

    Improving the Representation of Cross-Boundary Transport of Anthropogenic Pollution in East Asia Using Radon-222.

    Get PDF
    We report on 10 years of hourly atmospheric radon, CO, and SO2 observations at Gosan Station, Korea. An improved radon detector was installed during this period and performance of the detectors is compared. A technique is developed whereby the distribution of radon concentrations from a fetch region can be used to select air masses that have consistently been in direct contact with land-based emissions, and have been least diluted en route to the measurement site. Hourly radon concentrations are used to demonstrate and characterise contamination of remote-fetch pollution observations by local emissions at this key WMO GAW site, and a seasonally-varying 5-hour diurnal sampling window is proposed for days on which diurnal cycles are evident to minimise these effects. The seasonal variability in mixing depth and “background” pollutant concentrations are characterised. Based on a subset of observations most representative of the important regional fetch areas for this site, and least affected by local emissions, seasonal estimates of CO and SO2 in air masses originating from South China, North China, Korea and Japan are compared across the decade of observations. 2016, © Taiwan Association for Aerosol Researc
    corecore