689 research outputs found

    Black, Hispanic, and White Women's Perception of Heart Disease

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73200/1/j.0889-7204.2007.05698.x.pd

    Is Our Universe Natural?

    Full text link
    It goes without saying that we are stuck with the universe we have. Nevertheless, we would like to go beyond simply describing our observed universe, and try to understand why it is that way rather than some other way. Physicists and cosmologists have been exploring increasingly ambitious ideas that attempt to explain why certain features of our universe aren't as surprising as they might first appear.Comment: Invited review for Nature, 11 page

    Gravity waves and the LHC: Towards high-scale inflation with low-energy SUSY

    Get PDF
    It has been argued that rather generic features of string-inspired inflationary theories with low-energy supersymmetry (SUSY) make it difficult to achieve inflation with a Hubble scale H > m_{3/2}, where m_{3/2} is the gravitino mass in the SUSY-breaking vacuum state. We present a class of string-inspired supergravity realizations of chaotic inflation where a simple, dynamical mechanism yields hierarchically small scales of post-inflationary supersymmetry breaking. Within these toy models we can easily achieve small ratios between m_{3/2} and the Hubble scale of inflation. This is possible because the expectation value of the superpotential relaxes from large to small values during the course of inflation. However, our toy models do not provide a reasonable fit to cosmological data if one sets the SUSY-breaking scale to m_{3/2} < TeV. Our work is a small step towards relieving the apparent tension between high-scale inflation and low-scale supersymmetry breaking in string compactifications.Comment: 21+1 pages, 5 figures, LaTeX, v2: added references, v3: very minor changes, version to appear in JHE

    Argyres-Douglas Loci, Singularity Structures and Wall-Crossings in Pure N=2 Gauge Theories with Classical Gauge Groups

    Full text link
    N=2 Seiberg-Witten theories allow an interesting interplay between the Argyres-Douglas loci, singularity structures and wall-crossing formulae. In this paper we investigate this connection by first studying the singularity structures of hyper-elliptic Seiberg-Witten curves for pure N=2 gauge theories with SU(r+1) and Sp(2r) gauge groups, and propose new methods to locate the Argyres-Douglas loci in the moduli space, where multiple mutually non-local BPS states become massless. In a region of the moduli space, we compute dyon charges for all 2r+2 and 2r+1 massless dyons for SU(r+1) and Sp(2r) gauge groups respectively for rank r>1. From here we elucidate the connection to the wall-crossing phenomena for pure Sp(4) Seiberg-Witten theory near the Argyres-Douglas loci, despite our emphasis being only at the massless sector of the BPS spectra. We also present 2r-1 candidates for the maximal Argyres-Douglas points for pure SO(2r+1) Seiberg-Witten theory.Comment: 81 pages, 41 figures, LaTeX; v2: Minor cosmetic changes and correction of a typographical error in acknowledgement. Final version to appear in JHE

    String theoretic QCD axions in the light of PLANCK and BICEP2

    Get PDF
    The QCD axion solving the strong CP problem may originate from antisymmetric tensor gauge fields in compactified string theory, with a decay constant around the GUT scale. Such possibility appears to be ruled out now by the detection of tensor modes by BICEP2 and the PLANCK constraints on isocurvature density perturbations. A more interesting and still viable possibility is that the string theoretic QCD axion is charged under an anomalous U(1)_A gauge symmetry. In such case, the axion decay constant can be much lower than the GUT scale if moduli are stabilized near the point of vanishing Fayet-Illiopoulos term, and U(1)_A-charged matter fields get a vacuum value far below the GUT scale due to a tachyonic SUSY breaking scalar mass. We examine the symmetry breaking pattern of such models during the inflationary epoch with the Hubble expansion rate 10^{14} GeV, and identify the range of the QCD axion decay constant, as well as the corresponding relic axion abundance, consistent with known cosmological constraints. In addition to the case that the PQ symmetry is restored during inflation, there are other viable scenarios, including that the PQ symmetry is broken during inflation at high scales around 10^{16}-10^{17} GeV due to a large Hubble-induced tachyonic scalar mass from the U(1)_A D-term, while the present axion scale is in the range 10^{9}-5\times 10^{13} GeV, where the present value larger than 10^{12} GeV requires a fine-tuning of the axion misalignment angle. We also discuss the implications of our results for the size of SUSY breaking soft masses.Comment: 29 pages, 1 figure; v3: analysis updated including the full anharmonic effects, references added, version accepted for publication in JHE

    The holographic principle

    Get PDF
    There is strong evidence that the area of any surface limits the information content of adjacent spacetime regions, at 10^(69) bits per square meter. We review the developments that have led to the recognition of this entropy bound, placing special emphasis on the quantum properties of black holes. The construction of light-sheets, which associate relevant spacetime regions to any given surface, is discussed in detail. We explain how the bound is tested and demonstrate its validity in a wide range of examples. A universal relation between geometry and information is thus uncovered. It has yet to be explained. The holographic principle asserts that its origin must lie in the number of fundamental degrees of freedom involved in a unified description of spacetime and matter. It must be manifest in an underlying quantum theory of gravity. We survey some successes and challenges in implementing the holographic principle.Comment: 52 pages, 10 figures, invited review for Rev. Mod. Phys; v2: reference adde

    General Argyres-Douglas Theory

    Full text link
    We construct a large class of Argyres-Douglas type theories by compactifying six dimensional (2,0) A_N theory on a Riemann surface with irregular singularities. We give a complete classification for the choices of Riemann surface and the singularities. The Seiberg-Witten curve and scaling dimensions of the operator spectrum are worked out. Three dimensional mirror theory and the central charges a and c are also calculated for some subsets, etc. Our results greatly enlarge the landscape of N=2 superconformal field theory and in fact also include previous theories constructed using regular singularity on the sphere.Comment: 55 pages, 20 figures, minor revision and typos correcte

    The Cosmological Constant

    Get PDF
    This is a review of the physics and cosmology of the cosmological constant. Focusing on recent developments, I present a pedagogical overview of cosmology in the presence of a cosmological constant, observational constraints on its magnitude, and the physics of a small (and potentially nonzero) vacuum energy.Comment: 50 pages. Submitted to Living Reviews in Relativity (http://www.livingreviews.org/), December 199

    Holography of a Composite Inflaton

    Full text link
    We study the time evolution of a brane construction that is holographically dual to a strongly coupled gauge theory that dynamically breaks a global symmetry through the generation of an effective composite Higgs vev. The D3/D7 system with a background magnetic field or non-trivial gauge coupling (dilaton) profile displays the symmetry breaking. We study motion of the D7 brane in the background of the D3 branes. For small field inflation in the field theory the effective Higgs vev rolls from zero to the true vacuum value. We study what phenomenological dilaton profile generates the slow rolling needed, hence learning how the strongly coupled gauge theory's coupling must run. We note that evolution of our configuration in the holographic direction, representing the phyiscs of the strong interactions, can provide additional slowing of the roll time. Inflation seems to be favoured if the coupling changes by only a small amount or very gently. We speculate on how such a scenario could be realized away from N=4 gauge theory, for example, in a walking gauge theory.Comment: 13 pages, 12 figures; v2: Added reference
    corecore