46 research outputs found

    Determination of the Carrier-Envelope Phase of Few-Cycle Laser Pulses with Terahertz-Emission Spectroscopy

    Full text link
    The availability of few-cycle optical pulses opens a window to physical phenomena occurring on the attosecond time scale. In order to take full advantage of such pulses, it is crucial to measure and stabilise their carrier-envelope (CE) phase, i.e., the phase difference between the carrier wave and the envelope function. We introduce a novel approach to determine the CE phase by down-conversion of the laser light to the terahertz (THz) frequency range via plasma generation in ambient air, an isotropic medium where optical rectification (down-conversion) in the forward direction is only possible if the inversion symmetry is broken by electrical or optical means. We show that few-cycle pulses directly produce a spatial charge asymmetry in the plasma. The asymmetry, associated with THz emission, depends on the CE phase, which allows for a determination of the phase by measurement of the amplitude and polarity of the THz pulse

    Simulation Methodology for Electron Transfer in CMOS Quantum Dots

    Full text link
    The construction of quantum computer simulators requires advanced software which can capture the most significant characteristics of the quantum behavior and quantum states of qubits in such systems. Additionally, one needs to provide valid models for the description of the interface between classical circuitry and quantum core hardware. In this study, we model electron transport in semiconductor qubits based on an advanced CMOS technology. Starting from 3D simulations, we demonstrate an order reduction and the steps necessary to obtain ordinary differential equations on probability amplitudes in a multi-particle system. We compare numerical and semi-analytical techniques concluding this paper by examining two case studies: the electron transfer through multiple quantum dots and the construction of a Hadamard gate simulated using a numerical method to solve the time-dependent Schrodinger equation and the tight-binding formalism for a time-dependent Hamiltonian

    Attosecond Dynamics of Molecular Electronic Ring Currents

    No full text
    Ultrafast charge migration is of fundamental importance to photoinduced chemical reactions. However, exploring such a quantum dynamical process requires demanding spatial and temporal resolutions. We show how electronic coherence dynamics induced in molecules by a circularly polarized UV pulse can be tracked by using a time-delayed circularly polarized attosecond X-ray pulse. The X-ray probe spectra retrieve an image at different time delays, encoding instantaneous pump-induced circular charge migration information on an attosecond time scale. A time-dependent ultrafast electronic coherence associated with the periodical circular ring currents shows a strong dependence on the helicity of the UV pulse, which may provide a direct approach to access and control the electronic quantum coherence dynamics in photophysical and photochemical reactions in real time

    Identifying Strong-Field Effects in Indirect Photofragmentation Reactions

    No full text
    Exploring molecular breakup processes induced by light-matter interactions has both fundamental and practical implications. However, it remains a challenge to elucidate the underlying reaction mechanism in the strong field regime, where the potentials of the reactant are modified dramatically. Here we perform a theoretical analysis combined with a time-dependent wavepacket calculation to show how a strong ultrafast laser field affects the photofragment products. As an example, we examine the photochemical reaction of breaking up the molecule NaI into the neutral atoms Na and I, which due to inherent nonadiabatic couplings are indirectly formed in a stepwise fashion via the reaction intermediate NaI∗. By analyzing the angular dependencies of fragment distributions, we are able to identify the reaction intermediate NaI∗ from the weak to the strong field-induced nonadiabatic regimes. Furthermore, the energy levels of NaI∗ can be extracted from the quantum interference patterns of the transient photofragment momentum distribution

    Identifying Strong-Field Effects in Indirect Photofragmentation Reactions

    No full text
    Exploring molecular breakup processes induced by light-matter interactions has both fundamental and practical implications. However, it remains a challenge to elucidate the underlying reaction mechanism in the strong field regime, where the potentials of the reactant are modified dramatically. Here we perform a theoretical analysis combined with a time-dependent wavepacket calculation to show how a strong ultrafast laser field affects the photofragment products. As an example, we examine the photochemical reaction of breaking up the molecule NaI into the neutral atoms Na and I, which due to inherent nonadiabatic couplings are indirectly formed in a stepwise fashion via the reaction intermediate NaI∗. By analyzing the angular dependencies of fragment distributions, we are able to identify the reaction intermediate NaI∗ from the weak to the strong field-induced nonadiabatic regimes. Furthermore, the energy levels of NaI∗ can be extracted from the quantum interference patterns of the transient photofragment momentum distribution

    Modeling the nonlinear refractive index in atomic gases

    No full text
    corecore