640 research outputs found
Recommended from our members
Comprehensive Immune Monitoring of Clinical Trials to Advance Human Immunotherapy.
The success of immunotherapy has led to a myriad of clinical trials accompanied by efforts to gain mechanistic insight and identify predictive signatures for personalization. However, many immune monitoring technologies face investigator bias, missing unanticipated cellular responses in limited clinical material. We present here a mass cytometry (CyTOF) workflow for standardized, systems-level biomarker discovery in immunotherapy trials. To broadly enumerate immune cell identity and activity, we established and extensively assessed a reference panel of 33 antibodies to cover major cell subsets, simultaneously quantifying activation and immune checkpoint molecules in a single assay. This assay enumerates ≥98% of peripheral immune cells with ≥4 positively identifying antigens. Robustness and reproducibility are demonstrated on multiple samples types, across two research centers and by orthogonal measurements. Using automated analysis, we identify stratifying immune signatures in bone marrow transplantation-associated graft-versus-host disease. Together, this validated workflow ensures comprehensive immunophenotypic analysis and data comparability and will accelerate biomarker discovery
Comment on: "Estimating the Hartree-Fock limit from finite basis set calculations" [Jensen F (2005) Theor Chem Acc 113:267]
We demonstrate that a minor modification of the extrapolation proposed by
Jensen [(2005): Theor Chem Acc 113:267] yields very reliable estimates of the
Hartree-Fock limit in conjunction with correlation consistent basis sets.
Specifically, a two-point extrapolation of the form
yields HF limits
with an RMS error of 0.1 millihartree using aug-cc-pVQZ and
aug-cc-pV5Z basis sets, and of 0.01 millihartree using aug-cc-pV5Z and
aug-cc-pV6Z basis sets.Comment: Theoretical Chemistry Accounts, in pres
Recommended from our members
viSNE and Wanderlust, two algorithms for the visualization and analysis of high-dimensional single-cell data
The immune system presents a unique opportunity for studying development in mammals. White blood cells undergo differentiation and proliferation, a never-ending process throughout the life of the organism. Hematopoiesis, the development of cells in the immune system, depends upon the interaction between many different cell types (some of which comprise less than a tenth of a percent of the population), transient regulatory decisions, genomic rearrangement events, cell proliferation, and death. To capture these events we employ mass cytometry, a novel technology that measures fifty proteins simultaneously in single cells. Mass cytometry results in large quantities of high-dimensional data which challenges existing computational techniques. To address these challenges, we developed two dimensionality reduction algorithms for analyzing mass cytometry and other single-cell data. The first, viSNE, transforms high-dimensional data into an intuitive two-dimensional map, making it accessible to visual exploration. The second algorithm, Wanderlust, receives as input a static snapshot (where cells occupy different stages of their development) and constructs their developmental ordering: the developmental trajectory. viSNE maps healthy bone marrow into a canonical shape that separates cell subtypes. In leukemia, however, the shape is malformed: the maps of cancer samples are distinct from the healthy map and from each other. The algorithm highlights structure in the heterogeneity of surface phenotype expression in cancer, traverses the progression from diagnosis to relapse, and identifies a rare leukemia population in minimal residual disease settings. Wanderlust was applied to healthy B lineage cells, where the trajectory follows known marker expression trends and genetic recombination events. Using the Wanderlust trajectory we identified CD24 as an early marker of B cell development. The trajectory captures the coordination between several regulatory mechanisms (surface marker expression, signaling, proliferation and apoptosis) during crucial development checkpoints. As new technologies raise the number of simultaneously measured parameters in each cell to the hundreds, viSNE and Wanderlust will become a mainstay in analyzing and interpreting such experiments
Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses.
Mesenchymal tumor subpopulations secrete pro-tumorigenic cytokines and promote treatment resistance1-4. This phenomenon has been implicated in chemorefractory small cell lung cancer and resistance to targeted therapies5-8, but remains incompletely defined. Here, we identify a subclass of endogenous retroviruses (ERVs) that engages innate immune signaling in these cells. Stimulated 3 prime antisense retroviral coding sequences (SPARCS) are oriented inversely in 3' untranslated regions of specific genes enriched for regulation by STAT1 and EZH2. Derepression of these loci results in double-stranded RNA generation following IFN-γ exposure due to bi-directional transcription from the STAT1-activated gene promoter and the 5' long terminal repeat of the antisense ERV. Engagement of MAVS and STING activates downstream TBK1, IRF3, and STAT1 signaling, sustaining a positive feedback loop. SPARCS induction in human tumors is tightly associated with major histocompatibility complex class 1 expression, mesenchymal markers, and downregulation of chromatin modifying enzymes, including EZH2. Analysis of cell lines with high inducible SPARCS expression reveals strong association with an AXL/MET-positive mesenchymal cell state. While SPARCS-high tumors are immune infiltrated, they also exhibit multiple features of an immune-suppressed microenviroment. Together, these data unveil a subclass of ERVs whose derepression triggers pathologic innate immune signaling in cancer, with important implications for cancer immunotherapy
An Integrated Approach Providing Scientific and Policy-Relevant Insights for South-West Bangladesh
Bangladesh is identified as an impact hotspot for sea-level rise in multiple studies. However, a range of other factors must be considered including catchment management, socio-economic development and governance quality, as well as delta plain biophysical processes. Taking an integrated assessment approach highlights that to 2050 future changes are more sensitive to human choice/policy intervention than climate change, ecosystem services diminish as a proportion of the economy with time, continuing historic trends and significant poverty persists for some households. Hence under favourable policy decisions, development could transform Bangladesh by 2050 making it less vulnerable to longer-term climate change and subsidence. Beyond 2050, the threats of climate change are much larger, requiring strategic adaptation responses and policy changes that must be initiated now
The Realm of Oncological Lung Surgery: From Past to Present and Future Perspectives
In this chapter, a historical overview as well as an overview of state of the art of the surgical techniques for the treatment of lung cancer is outlined. The chapter focuses on the introduction of open surgery, video-assisted thoracic surgery (VATS), uniportal VATS (UVATS), and robotic-assisted thoracic surgery (RATS) techniques for lung resections. A short introduction on upcoming techniques and modalities is given. The currently available tools as three-dimensional (3D) computed tomography (CT), virtual reality, and endo-bronchial surgery will be discussed. Based on the current development, this chapter attempts to delineate the horizon of oncological lung surgery. The information is generated not only from the available literature, but also from the experiences of surgeons and other physicians as well as co-workers involved in lung cancer treatment around the world. This chapter can be seen as a general introduction to several aspects of oncological lung surgery
Measurement of the cosmic ray spectrum above eV using inclined events detected with the Pierre Auger Observatory
A measurement of the cosmic-ray spectrum for energies exceeding
eV is presented, which is based on the analysis of showers
with zenith angles greater than detected with the Pierre Auger
Observatory between 1 January 2004 and 31 December 2013. The measured spectrum
confirms a flux suppression at the highest energies. Above
eV, the "ankle", the flux can be described by a power law with
index followed by
a smooth suppression region. For the energy () at which the
spectral flux has fallen to one-half of its extrapolated value in the absence
of suppression, we find
eV.Comment: Replaced with published version. Added journal reference and DO
Patient-reported outcome measures of the impact of cancer on patient’s everyday lives: a systematic review
Purpose: Patients with advanced disease are living longer and commonly used patient-reported outcome measures (PROMs) may miss relevant elements of the quality of extended survival. This systematic review examines the measures used to capture aspects of the quality of survival including impact on patients’ everyday lives such as finances, work and family roles.
Methods: Searches were conducted in MEDLINE, EMBASE,
CINAHL and PsycINFO restricted to English language articles. Information on study characteristics, instruments and outcomes was systematically extracted and synthesised. A predefined set of criteria was used to rate the quality of studies.
Results: From 2761 potentially relevant articles, 22 met all inclusion criteria, including 10 concerning financial distress, 3 on roles and responsibilities and 9 on multiple aspects of social well-being. Generally, studies were not of high quality; many lacked bias free participant selection, had confounding factors and had not accounted for all participants. High levels of financial distress were reported and were associated with multiple demographic factors such as age and income. There were few reports concerned with impacts on patients’ roles/responsibilities in everyday life although practical and emotional struggles with parenting were identified. Social difficulties were common and associated with multiple factors including being a caregiver. Many studies were single time-point surveys and used non-validated measures. Exceptions were employment of the COST and Social Difficulties Inventory (SDI), validated measures of financial and social distress respectively.
Conclusions: Impact on some important parts of patients’ everyday lives is insufficiently and inconsistently captured. Further PROM development focussing on roles and responsibilities, including work and caring for dependents, is warranted.
Implications for Cancer Survivors: Factors such as finances, employment and responsibility for caring for dependents (e.g. children and elderly relatives) can affect the well-being of cancer survivors. There is a need to ensure that any instruments used to assess patients’ social well-being are broad enough to include these areas so that any difficulties arising can be better understood and appropriately supported
Decoding the regulatory network of early blood development from single-cell gene expression measurements.
Reconstruction of the molecular pathways controlling organ development has been hampered by a lack of methods to resolve embryonic progenitor cells. Here we describe a strategy to address this problem that combines gene expression profiling of large numbers of single cells with data analysis based on diffusion maps for dimensionality reduction and network synthesis from state transition graphs. Applying the approach to hematopoietic development in the mouse embryo, we map the progression of mesoderm toward blood using single-cell gene expression analysis of 3,934 cells with blood-forming potential captured at four time points between E7.0 and E8.5. Transitions between individual cellular states are then used as input to develop a single-cell network synthesis toolkit to generate a computationally executable transcriptional regulatory network model of blood development. Several model predictions concerning the roles of Sox and Hox factors are validated experimentally. Our results demonstrate that single-cell analysis of a developing organ coupled with computational approaches can reveal the transcriptional programs that underpin organogenesis.We thank J. Downing (St. Jude Children's Research Hospital, Memphis, TN, USA) for the Runx1-ires-GFP mouse. Research in the authors' laboratory is supported by the Medical Research Council, Biotechnology and Biological Sciences Research Council, Leukaemia and Lymphoma Research, the Leukemia and Lymphoma Society, Microsoft Research and core support grants by the Wellcome Trust to the Cambridge Institute for Medical Research and Wellcome Trust - MRC Cambridge Stem Cell Institute. V.M. is supported by a Medical Research Council Studentship and Centenary Award and S.W. by a Microsoft Research PhD Scholarship.This is the accepted manuscript for a paper published in Nature Biotechnology 33, 269–276 (2015) doi:10.1038/nbt.315
- …
