24 research outputs found

    Root-hair endophyte stacking in finger millet creates a physicochemical barrier to trap the fungal pathogen Fusarium graminearum

    Full text link
    The ancient African crop, finger millet, has broad resistance to pathogens including the toxigenic fungus Fusarium graminearum. Here, we report the discovery of a novel plant defence mechanism resulting from an unusual symbiosis between finger millet and a root-inhabiting bacterial endophyte, M6 (Enterobacter sp.). Seed-coated M6 swarms towards root-invading Fusarium and is associated with the growth of root hairs, which then bend parallel to the root axis, subsequently forming biofilm-mediated microcolonies, resulting in a remarkable, multilayer root-hair endophyte stack (RHESt). The RHESt results in a physical barrier that prevents entry and/or traps F. graminearum, which is then killed. M6 thus creates its own specialized killing microhabitat. Tn5-mutagenesis shows that M6 killing requires c-di-GMP-dependent signalling, diverse fungicides and resistance to a Fusarium-derived antibiotic. Further molecular evidence suggests long-term host-endophyte-pathogen co-evolution. The end result of this remarkable symbiosis is reduced deoxynivalenol mycotoxin, potentially benefiting millions of subsistence farmers and livestock. Further results suggest that the anti-Fusarium activity of M6 may be transferable to maize and wheat. RHESt demonstrates the value of exploring ancient, orphan crop microbiomes

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700

    Effects of High Stocking Grazing Density of Diverse Swards on Forage Production, Animal Performance and Soil Organic Matter: A Case Study

    No full text
    Mob grazing is regarded as a grazing management practice to increase soil organic matter, pasture productivity and nutrient cycling. There are different perspectives in the literature regarding the definition of mob grazing, but it is generally accepted that mob grazing is characterised by high stocking densities of livestock which are moved frequently from paddock to paddock (e.g. with the aid of electric fences), trampling forage into the soil as they graze. It has also been recognised that biodiverse pastures have the potential to build up carbon levels in the soil much more effectively than conventional (usually monocultures) or less diverse pastures; in turn all can enhance animal productivity and maintain good herd health. This paper reviews the concept of mob grazing and the benefits of diverse swards and provides evidence whether high stocking density as a grazing strategy can increase soil organic matter and enhance overall animal performance, based on observations on one farm. The grazing rotation applied in the farm during the study year was rather short to fulfil the expectations of a mob-grazing system, but stocking density was high (115 t LW ha−1). The results show that high stocking grazing density of biodiverse pastures has a remarkable effect on the build-up of the soil organic matter and that biodiverse pastures can serve as a viable alternative to conventional pastures as they can maintain animal productivity at high levels
    corecore