55 research outputs found

    The role of clathrin in post-golgi trafficking in toxoplasma gondii

    Get PDF
    Apicomplexan parasites are single eukaryotic cells with a highly polarised secretory system that contains unique secretory organelles (micronemes and rhoptries) that are required for host cell invasion. In contrast, the role of the endosomal system is poorly understood in these parasites. With many typical endocytic factors missing, we speculated that endocytosis depends exclusively on a clathrin-mediated mechanism. Intriguingly, in Toxoplasma gondii we were only able to observe the endogenous clathrin heavy chain 1 (CHC1) at the Golgi, but not at the parasite surface. For the functional characterisation of Toxoplasma gondii CHC1 we generated parasite mutants conditionally expressing the dominant negative clathrin Hub fragment and demonstrate that CHC1 is essential for vesicle formation at the trans-Golgi network. Consequently, the functional ablation of CHC1 results in Golgi aberrations, a block in the biogenesis of the unique secretory microneme and rhoptry organelles, and of the pellicle. However, we found no morphological evidence for clathrin mediating endocytosis in these parasites and speculate that they remodelled their vesicular trafficking system to adapt to an intracellular lifestyle

    In Silico Identification of Specialized Secretory-Organelle Proteins in Apicomplexan Parasites and In Vivo Validation in Toxoplasma gondii

    Get PDF
    Apicomplexan parasites, including the human pathogens Toxoplasma gondii and Plasmodium falciparum, employ specialized secretory organelles (micronemes, rhoptries, dense granules) to invade and survive within host cells. Because molecules secreted from these organelles function at the host/parasite interface, their identification is important for understanding invasion mechanisms, and central to the development of therapeutic strategies. Using a computational approach based on predicted functional domains, we have identified more than 600 candidate secretory organelle proteins in twelve apicomplexan parasites. Expression in transgenic T. gondii of eight proteins identified in silico confirms that all enter into the secretory pathway, and seven target to apical organelles associated with invasion. An in silico approach intended to identify possible host interacting proteins yields a dataset enriched in secretory/transmembrane proteins, including most of the antigens known to be engaged by apicomplexan parasites during infection. These domain pattern and projected interactome approaches significantly expand the repertoire of proteins that may be involved in host parasite interactions

    A study of selected Plasmodium yoelii messenger RNAs during hepatocyte infection

    No full text
    We investigated the expression of several mRNAs in exoerythrocytic and erythrocytic stages of Plasmodium yoelii in infected mice, focusing our attention on genes thought to be involved in signal transduction (like pypka and pymap-1, encoding homologues of cAMP-dependent and mitogen-activated protein kinases, respectively) and cell cycle progression (those encoding the cdc2-related kinases Pycrk-1, Pycrk-3 and Pymrk). Messengers coding for enzymes involved in general processes such as DNA replication and RNA transcription (both subunits of the ribonucleotide reductase (Pyrnr1, Pyrnr2) and RNA polymerase II) as well as a messenger coding for Pys21, a sexual stage-specific protein, were also investigated. Total RNA was prepared from livers of infected mice at different times post sporozoite inoculation. In contrast to the pys21 transcript, which was observed only in infected erythrocytes, all messenger species could be detected in the liver by RT-PCR, peaking at 43 h post infection, a time when parasite burden was maximum, and decreasing markedly thereafter to become hardly visible at 168 h. Some transcripts (pypka, pymap-1, pyrnr1 and pyrnr2) could be detected 12 h after infection, while others (pymrk and pyrnapolII) did not become detectable until 24 h. In addition, we characterised all these messengers by Northern blot of total RNAs extracted from infected erythrocytes. Taken together, these data suggest that a similar set of regulatory genes is expressed during both exoerythrocytic and erythrocytic schizogony
    corecore