28 research outputs found

    In situ magnetic separation of antibody fragments from Escherichia coli in complex media.

    Get PDF
    BACKGROUND: In situ magnetic separation (ISMS) has emerged as a powerful tool to overcome process constraints such as product degradation or inhibition of target production. In the present work, an integrated ISMS process was established for the production of his-tagged single chain fragment variable (scFv) D1.3 antibodies ("D1.3") produced by E. coli in complex media. This study investigates the impact of ISMS on the overall product yield as well as its biocompatibility with the bioprocess when metal-chelate and triazine-functionalized magnetic beads were used. RESULTS: Both particle systems are well suited for separation of D1.3 during cultivation. While the triazine beads did not negatively impact the bioprocess, the application of metal-chelate particles caused leakage of divalent copper ions in the medium. After the ISMS step, elevated copper concentrations above 120 mg/L in the medium negatively influenced D1.3 production. Due to the stable nature of the model protein scFv D1.3 in the biosuspension, the application of ISMS could not increase the overall D1.3 yield as was shown by simulation and experiments. CONCLUSIONS: We could demonstrate that triazine-functionalized beads are a suitable low-cost alternative to selectively adsorb D1.3 fragments, and measured maximum loads of 0.08 g D1.3 per g of beads. Although copper-loaded metal-chelate beads did adsorb his-tagged D1.3 well during cultivation, this particle system must be optimized by minimizing metal leakage from the beads in order to avoid negative inhibitory effects on growth of the microorganisms and target production. Hereby, other types of metal chelate complexes should be tested to demonstrate biocompatibility. Such optimized particle systems can be regarded as ISMS platform technology, especially for the production of antibodies and their fragments with low stability in the medium. The proposed model can be applied to design future ISMS experiments in order to maximize the overall product yield while the amount of particles being used is minimized as well as the number of required ISMS steps

    Evaluation of immunoglobulin purification methods and their impact on quality and yield of antigen-specific antibodies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antibodies are the main effectors against malaria blood-stage parasites. Evaluation of functional activities in immune sera from Phase 2a/b vaccine trials may provide invaluable information in the search for immune correlates of protection. However, the presence of anti-malarial-drugs, improper collection/storage conditions or concomitant immune responses against other pathogens can contribute to non-specific anti-parasite activities when the sera/plasma are tested <it>in vitro</it>. Purification of immunoglobulin is a standard approach for reducing such non-specific background activities, but the purification method itself can alter the quality and yield of recovered Ag-specific antibodies.</p> <p>Methods</p> <p>To address this concern, various immunoglobulin (Ig) purification methods (protein G Sepharose, protein A/G Sepharose, polyethylene glycol and caprylic acid-ammonium sulphate precipitation) were evaluated for their impact on the quality, quantity and functional activity of purified rabbit and human Igs. The recovered Igs were analysed for yield and purity by SDS-PAGE, for quality by Ag-specific ELISAs (determining changes in titer, avidity and isotype distribution) and for functional activity by <it>in vitro </it>parasite growth inhibition assay (GIA).</p> <p>Results</p> <p>This comparison demonstrated that overall polyethylene glycol purification of human serum/plasma samples and protein G Sepharose purification of rabbit sera are optimal for recovering functional Ag-specific antibodies.</p> <p>Conclusion</p> <p>Consequently, critical consideration of the purification method is required to avoid selecting non-representative populations of recovered Ig, which could influence interpretations of vaccine efficacy, or affect the search for immune correlates of protection.</p

    Petasis-Ugi ligands: New affinity tools for the enrichment of phosphorylated peptides

    No full text
    Affinity chromatography is a widespread technique for the enrichment and isolation of biologics, which relies on the selective and reversible interaction between affinity ligands and target molecules. Small synthetic affinity ligands are valuable alternatives due to their robustness, low cost and fast ligand development. This work reports, for the first time, the use of a sequential Petasis-Ugi multicomponent reaction to generate rationally designed solid-phase combinatorial libraries of small synthetic ligands, which can be screened for the selection of new affinity adsorbents towards biological targets. As a proof of concept, the Petasis-Ugi reaction was here employed in the discovery of affinity ligands suitable for phosphopeptide enrichment. A combinatorial library of 84 ligands was designed, synthesized on a chromatographic solid support and screened in situ for the specific binding of phosphopeptides binding human BRCA1C-terminal domains. The success of the reaction on the chromatographic matrix was confirmed by both inductively coupled plasma atomic emission spectroscopy and fluorescence microscopy. Three lead ligands were identified due to their superior performance in terms of binding capacity and selectivity towards the phosphorylated moiety on peptides, which showed the feasibility of the Petasis-Ugi reaction for affinity ligand development

    Phosphopeptide enrichment using various magnetic nanocomposites: An overview

    No full text
    Magnetic nanocomposites are hybrid structures consisting of an iron oxide (Fe3O4/γ-Fe2O3) superparamagnetic core and a coating shell which presents affinity for a specific target molecule. Within the scope of phosphopeptide enrichment, the magnetic core is usually first functionalized with an intermediate layer of silica or carbon to improve dispersibility and increase specific area, and then with an outer layer of a phosphate-affi nity material. Fe3O4-coating materials include metal oxides, rare earth metal-based compounds, immobilized-metalions, polymers, and many others. This chapter provides a generic overview of the different materials that can be found in literature and their advantages and drawbacks

    Platforms for enrichment of phosphorylated proteins and peptides in proteomics

    No full text
    Protein phosphorylation is a complex and highly dynamic process involved in numerous biological events. Abnormal phosphorylation is one of the underlying mechanisms for the development of cancer and metabolic disorders. The identification and absolute quantification of specific phospho-signatures can help elucidate protein functions in signaling pathways and facilitate the development of new and personalized diagnostic and therapeutic tools. This review presents a variety of strategies currently utilized for the enrichment of phosphorylated proteins and peptides before mass spectrometry analysis during proteomic studies. The investigation of specific affinity reagents, allied to the integration of different enrichment processes, is triggering the development of more selective, rapid and cost-effective high-throughput automated platforms. © 2011 Elsevier Ltd

    Affinity tags in protein purification and peptide enrichment: An overview

    No full text
    The reversible interaction between an affinity ligand and a complementary receptor has been widely explored in purification systems for several biomolecules. The development of tailored affinity ligands highly specific towards particular target biomolecules is one of the options in affinity purification systems. However, both genetic and chemical modifications on proteins and peptides widen the application of affinity ligand-tag receptor pairs towards universal capture and purification strategies. In particular, this chapter will focus on two case studies highly relevant for biotechnology and biomedical areas, namely, the affinity tags and receptors employed on the production of recombinant fusion proteins and the chemical modification of phosphate groups on proteins and peptides and the subsequent specific capture and enrichment, a mandatory step before further proteomic analysis

    Gum arabic coated magnetic nanoparticles with affinity ligands specific for antibodies

    No full text
    A novel magnetic support based on gum Arabic (GA) coated iron oxide magnetic nanoparticles (MNP) has been endowed with affinity properties towards immunoglobulin G (IgG) molecules. The success of the in situ triazine ligand synthesis was confirmed by fluorescence assays. Two synthetic ligands previously developed for binding to IgG, named as ligand 22/8 (artificial Protein A) and ligand 8/7 (artificial Protein L) were immobilized on to MNPs coated with GA (MNP_GA). The dimension of the particles core was not affected by the surface functionalization with GA and triazine ligands. The hydrodynamic diameters of the magnetic supports indicate that the coupling of GA leads to the formation of larger agglomerates of particles with about 1μm, but the introduction of the triazine ligands leads to a decrease on MNPs size. The non-functionalized MNP_GA bound 28mg IgG/g, two times less than bare MNP (60mg IgG/g). MNP_GA modified with ligand 22/8 bound 133mg IgG/g support, twice higher than the value obtained for ligand 8/7 magnetic adsorbents (65 mg/g). Supports modified with ligand 22/8 were selected to study the adsorption and the elution of IgG. The adsorption of human IgG on this support followed a Langmuir behavior with a Qmáx of 344mg IgG/g support and Ka of 1.5×10,5 M. The studies on different elution conditions indicated that although the 0.05M citrate buffer (pH 3) presented good recovery yields (elution 64% of bound protein), there was occurrence of iron leaching at this acidic pH. Therefore, a potential alternative would be to elute bound protein with a 0.05M glycine-NaOH (pH 11) buffer. ©2010 John Wiley & Sons, Ltd

    The interaction of polymer-coated magnetic nanoparticles with seawater

    No full text
    Laboratory studies were conducted to evaluate the interaction between bare and polymer-coated magnetic nanoparticles (MNPs) with various environmentally relevant carrying solutions including natural oceanic seawater with and without addition of algal exopolymeric substances (EPS). The MNPs were coated with three different stabilising agents, namely gum Arabic (GA-MNP), dextran (D-MNP) and carboxymethyl-dextran (CMD-MNP). The colloidal stability of the suspensions was evaluated over 48 h and we demonstrated that: (i) hydrodynamic diameters increased over time regardless of carrying solution for all MNPs except the GA-coated ones; however, the relative changes were carrying solution- and coat-dependent; (ii) polydispersity indexes of the freshly suspended MNPs are below 0.5 for all coated MNPs, unlike the much higher values obtained for the uncoated MNPs; (iii) freshly prepared MNP suspensions (both coated and uncoated) in Milli-Q (MQ) water show high colloidal stability as indicated by zeta-potential values below -30 mV, which however decrease in absolute value within 48 h for all MNPs regardless of carrying solution; (iv) EPS seems to "stabilise" the GA-coated and the CMD-coated MNPs, but not the uncoated or the D-coated MNPs, which form larger aggregates within 48 h; (v) despite this aggregation, iron (Fe)-leaching from MNPs is sustained over 48 h, but remained within the range of 3-9% of the total iron-content of the initially added MNPs regardless of suspension media and capping agent. The environmental implications of our findings and biotechnological applicability of MNPs are discussed

    Magnetic fishing of recombinant green fluorescent proteins and tagged proteins with designed synthetic ligands

    No full text
    Biomimetic ligands have emerged to overcome disadvantages inherent in biological ligands. In particular, the Ugi reaction can generate scaffolds where molecular diversity can be introduced, allowing the synthesis and screening of ligand libraries in a high-throughput manner against a variety of biological targets. Two adsorbents bearing Ugi-based synthetic ligands, coined A4C7 and A7C1, were previously developed for the selective recovery of green fluorescent protein (GFP) and RKRKRK-tagged GFP directly from Escherichia coli crude extracts. This work describes, for the first time, the in situ synthesis of Ugi-based ligands on magnetic beads and their application in the magnetic recovery of cognate proteins
    corecore