38 research outputs found

    Gene expression patterns associated with blood-feeding in the malaria mosquito Anopheles gambiae

    Get PDF
    BACKGROUND: Blood feeding, or hematophagy, is a behavior exhibited by female mosquitoes required both for reproduction and for transmission of pathogens. We determined the expression patterns of 3,068 ESTs, representing ~2,000 unique gene transcripts using cDNA microarrays in adult female Anopheles gambiae at selected times during the first two days following blood ingestion, at 5 and 30 min during a 40 minute blood meal and at 0, 1, 3, 5, 12, 16, 24 and 48 hours after completion of the blood meal and compared their expression to transcript levels in mosquitoes with access only to a sugar solution. RESULTS: In blood-fed mosquitoes, 413 unique transcripts, approximately 25% of the total, were expressed at least two-fold above or below their levels in the sugar-fed mosquitoes, at one or more time points. These differentially expressed gene products were clustered using k-means clustering into Early Genes, Middle Genes, and Late Genes, containing 144, 130, and 139 unique transcripts, respectively. Several genes from each group were analyzed by quantitative real-time PCR in order to validate the microarray results. CONCLUSION: The expression patterns and annotation of the genes in these three groups (Early, Middle, and Late genes) are discussed in the context of female mosquitoes' physiological responses to blood feeding, including blood digestion, peritrophic matrix formation, egg development, and immunity

    Diagnosis and management of Cornelia de Lange syndrome:first international consensus statement

    Get PDF
    Cornelia de Lange syndrome (CdLS) is an archetypical genetic syndrome that is characterized by intellectual disability, well-defined facial features, upper limb anomalies and atypical growth, among numerous other signs and symptoms. It is caused by variants in any one of seven genes, all of which have a structural or regulatory function in the cohesin complex. Although recent advances in next-generation sequencing have improved molecular diagnostics, marked heterogeneity exists in clinical and molecular diagnostic approaches and care practices worldwide. Here, we outline a series of recommendations that document the consensus of a group of international experts on clinical diagnostic criteria, both for classic CdLS and non-classic CdLS phenotypes, molecular investigations, long-term management and care planning

    Fingerprinting of neurotoxic compounds using a mouse embryonic stem cell dual luminescence reporter assay

    Get PDF

    Cup is a nucleocytoplasmic shuttling protein that interacts with the eukaryotic translation initiation factor 4E to modulate Drosophila ovary development

    No full text
    In Drosophila, the product of the is (2)cup gene (Cup) is known to be crucial for diverse aspects of female germ-line development. Its functions at the molecular level, however, have remained mainly unexplored. Cup was found to directly associate with eukaryotic translation initiation factor 4E (eIF4E). In this report, we show that Cup is a nucleocytoplasmic shuttling protein and that the interaction with eIF4E promotes retention of the Cup protein in the cytoplasm. Cup is required for the correct accumulation and localization of eIF4E within the posterior cytoplasm of developing oocytes. We furthermore show that cup and eIF4E interact genetically, because a reduction in the level of eIF4E activity deteriorates the development and growth of ovaries bearing homozygous cup mutant alleles. Our results reveal a crucial role for the Cup-eIF4E complex in ovary-specific developmental programs

    Large T antigen on the simian virus 40 origin of replication: a 3D snapshot prior to DNA replication

    No full text
    Large T antigen is the replicative helicase of simian virus 40. Its specific binding to the origin of replication and oligomerization into a double hexamer distorts and unwinds dsDNA. In viral replication, T antigen acts as a functional homolog of the eukaryotic minichromosome maintenance factor MCM. T antigen is also an oncoprotein involved in transformation through interaction with p53 and pRb. We obtained the three-dimensional structure of the full-length T antigen double hexamer assembled at its origin of replication by cryoelectron microscopy and single-particle reconstruction techniques. The double hexamer shows different degrees of bending along the DNA axis. The two hexamers are differentiated entities rotated relative to each other. Isolated strands of density, putatively assigned to ssDNA, protrude from the hexamer–hexamer junction mainly at two opposite sites. The structure of the T antigen at the origin of replication can be understood as a snapshot of the dynamic events leading to DNA unwinding. Based on these results a model for the initiation of simian virus 40 DNA replication is proposed
    corecore