390 research outputs found

    Choose your target.

    Get PDF
    Journal ArticleThe technology of modifying endogenous genes has recently been extended from mice to Drosophila and sheep. Concurrently, genomic sequencing is uncovering thousands of previously uncharacterized genes. Armed with today's technologies, what are our best options for delineating the functions of these new genes

    The Bantam microRNA Is Associated with Drosophila Fragile X Mental Retardation Protein and Regulates the Fate of Germline Stem Cells

    Get PDF
    Fragile X syndrome, a common form of inherited mental retardation, is caused by the loss of fragile X mental retardation protein (FMRP). We have previously demonstrated that dFmr1, the Drosophila ortholog of the fragile X mental retardation 1 gene, plays a role in the proper maintenance of germline stem cells in Drosophila ovary; however, the molecular mechanism behind this remains elusive. In this study, we used an immunoprecipitation assay to reveal that specific microRNAs (miRNAs), particularly the bantam miRNA (bantam), are physically associated with dFmrp in ovary. We show that, like dFmr1, bantam is not only required for repressing primordial germ cell differentiation, it also functions as an extrinsic factor for germline stem cell maintenance. Furthermore, we find that bantam genetically interacts with dFmr1 to regulate the fate of germline stem cells. Collectively, our results support the notion that the FMRP-mediated translation pathway functions through specific miRNAs to control stem cell regulation

    Drosophila Eggshell Production: Identification of New Genes and Coordination by Pxt

    Get PDF
    Drosophila ovarian follicles complete development using a spatially and temporally controlled maturation process in which they resume meiosis and secrete a multi-layered, protective eggshell before undergoing arrest and/or ovulation. Microarray analysis revealed more than 150 genes that are expressed in a stage-specific manner during the last 24 hours of follicle development. These include all 30 previously known eggshell genes, as well as 19 new candidate chorion genes and 100 other genes likely to participate in maturation. Mutations in pxt, encoding a putative Drosophila cyclooxygenase, cause many transcripts to begin expression prematurely, and are associated with eggshell defects. Somatic activity of Pxt is required, as RNAi knockdown of pxt in the follicle cells recapitulates both the temporal expression and eggshell defects. One of the temporally regulated genes, cyp18a1, which encodes a cytochromome P450 protein mediating ecdysone turnover, is downregulated in pxt mutant follicles, and cyp18a1 mutation itself alters eggshell gene expression. These studies further define the molecular program of Drosophila follicle maturation and support the idea that it is coordinated by lipid and steroid hormonal signals

    Comparison of Life History Characteristics of the Genetically Modified OX513A Line and a Wild Type Strain of Aedes aegypti

    Get PDF
    The idea of implementing genetics-based insect control strategies modelled on the traditional SIT (Sterile Insect Technique), such as RIDL (Release of Insects carrying a Dominant Lethal), is becoming increasingly popular. In this paper, we compare a genetically modified line of Aedes aegypti carrying a tetracycline repressible, lethal positive feedback system (OX513A) with a genetically similar, unmodified counterpart and their respective responses to increasing larval rearing density using a constant amount of food per larva. The parameters that we examined were larval mortality, developmental rate (i.e., time to pupation), adult size and longevity

    Genome-Wide Gene Amplification during Differentiation of Neural Progenitor Cells In Vitro

    Get PDF
    DNA sequence amplification is a phenomenon that occurs predictably at defined stages during normal development in some organisms. Developmental gene amplification was first described in amphibians during gametogenesis and has not yet been described in humans. To date gene amplification in humans is a hallmark of many tumors. We used array-CGH (comparative genomic hybridization) and FISH (fluorescence in situ hybridization) to discover gene amplifications during in vitro differentiation of human neural progenitor cells. Here we report a complex gene amplification pattern two and five days after induction of differentiation of human neural progenitor cells. We identified several amplified genes in neural progenitor cells that are known to be amplified in malignant tumors. There is also a striking overlap of amplified chromosomal regions between differentiating neural progenitor cells and malignant tumor cells derived from astrocytes. Gene amplifications in normal human cells as physiological process has not been reported yet and may bear resemblance to developmental gene amplifications in amphibians and insects

    Rudra Interrupts Receptor Signaling Complexes to Negatively Regulate the IMD Pathway

    Get PDF
    Insects rely primarily on innate immune responses to fight pathogens. In Drosophila, antimicrobial peptides are key contributors to host defense. Antimicrobial peptide gene expression is regulated by the IMD and Toll pathways. Bacterial peptidoglycans trigger these pathways, through recognition by peptidoglycan recognition proteins (PGRPs). DAP-type peptidoglycan triggers the IMD pathway via PGRP-LC and PGRP-LE, while lysine-type peptidoglycan is an agonist for the Toll pathway through PGRP-SA and PGRP-SD. Recent work has shown that the intensity and duration of the immune responses initiating with these receptors is tightly regulated at multiple levels, by a series of negative regulators. Through two-hybrid screening with PGRP-LC, we identified Rudra, a new regulator of the IMD pathway, and demonstrate that it is a critical feedback inhibitor of peptidoglycan receptor signaling. Following stimulation of the IMD pathway, rudra expression was rapidly induced. In cells, RNAi targeting of rudra caused a marked up-regulation of antimicrobial peptide gene expression. rudra mutant flies also hyper-activated antimicrobial peptide genes and were more resistant to infection with the insect pathogen Erwinia carotovora carotovora. Molecularly, Rudra was found to bind and interfere with both PGRP-LC and PGRP-LE, disrupting their signaling complex. These results show that Rudra is a critical component in a negative feedback loop, whereby immune-induced gene expression rapidly produces a potent inhibitor that binds and inhibits pattern recognition receptors

    Efficiency of Spermatogonial Dedifferentiation during Aging

    Get PDF
    Adult stem cells are critical for tissue homeostasis; therefore, the mechanisms utilized to maintain an adequate stem cell pool are important for the survival of an individual. In Drosophila, one mechanism utilized to replace lost germline stem cells (GSCs) is dedifferentiation of early progenitor cells. However, the average number of male GSCs decreases with age, suggesting that stem cell replacement may become compromised in older flies.Using a temperature sensitive allelic combination of Stat92E to control dedifferentiation, we found that germline dedifferentiation is remarkably efficient in older males; somatic cells are also effectively replaced. Surprisingly, although the number of somatic cyst cells also declines with age, the proliferation rate of early somatic cells, including cyst stem cells (CySCs) increases.These data indicate that defects in spermatogonial dedifferentiation are not likely to contribute significantly to an aging-related decline in GSCs. In addition, our findings highlight differences in the ways GSCs and CySCs age. Strategies to initiate or enhance the ability of endogenous, differentiating progenitor cells to replace lost stem cells could provide a powerful and novel strategy for maintaining tissue homeostasis and an alternative to tissue replacement therapy in older individuals

    Liquid facets-Related (lqfR) Is Required for Egg Chamber Morphogenesis during Drosophila Oogenesis

    Get PDF
    Clathrin interactor 1 [CLINT1] (also called enthoprotin/EpsinR) is an Epsin N-terminal homology (ENTH) domain-containing adaptor protein that functions in anterograde and retrograde clathrin-mediated trafficking between the trans-Golgi network and the endosome. Removal of both Saccharomyces cerevisiae homologs, Ent3p and Ent5p, result in yeast that are viable, but that display a cold-sensitive growth phenotype and mistrafficking of various vacuolar proteins. Similarly, either knock-down or overexpression of vertebrate CLINT1 in cell culture causes mistrafficking of proteins. Here, we have characterized Drosophila CLINT1, liquid-facets Related (lqfR). LqfR is ubiquitously expressed throughout development and is localized to the Golgi and endosome. Strong hypomorphic mutants generated by imprecise P-element excision exhibit extra macrochaetae, rough eyes and are female sterile. Although essentially no eggs are laid, the ovaries do contain late-stage egg chambers that exhibit abnormal morphology. Germline clones reveal that LqfR expression in the somatic follicle cells is sufficient to rescue the oogenesis defects. Clones of mutant lqfR follicle cells have a decreased cell size consistent with a downregulation of Akt1. We find that while total Akt1 levels are increased there is also a significant decrease in activated phosphorylated Akt1. Taken together, these results show that LqfR function is required to regulate follicle cell size and signaling during Drosophila oogenesis

    Recent translational research: Oncogene discovery by insertional mutagenesis gets a new boost

    Get PDF
    Knowledge of the genes and genetic pathways involved in onco-genesis is essential if we are to identify novel targets for cancer therapy. Insertional mutagenesis in mouse models is among the most efficient tools to detect novel cancer genes. Retrovirus-mediated insertional mutagenesis received a tremendous boost by the availability of the mouse genome sequence and new PCR methods. Application of such advances were limited to lympho-magenesis but are now also being applied to mammary tumourigenesis. Novel transposons that allow insertional muta-genesis studies to be conducted in tumors of any mouse tissue may give cancer gene discovery a further boost
    corecore