10 research outputs found

    Modelling the Effect of Temperature on Respiration Rate of Fresh Cut Papaya (Carica papaya L.) Fruits.

    Get PDF
    A respiration rate (RR) model based on Peleg’s equation was developed for predicting RRs of fresh cut papaya. Respiration data for fresh cut papaya at 3/4 maturity were generated at temperatures 5, 10, 15, 20, 25 and 30°C using a closed system. RRs was found to be significantly influenced by storage temperature and increased from 0.021 to 0.289 mL[O2]/kg·h and 0.063 to 0.393 mL[CO2]/kg·h as a function of O2 and CO2 gas concentrations, respectively. Peleg’s constant K 1 and K 2 were obtained from linear regression analysis using GraphPad Prism 5.0 software and regression coefficients have good fit with values close to unity. The model was verified to assess the capability of its predictability of the RRs over the temperatures. There was good agreement with the experimentally estimated RRs. Information derived from the model can contribute in the design of successful modified atmospheric systems for storage of fresh cut papaya

    The physics and physiology of storage

    No full text

    The fading distinctions between classical patterns of ripening in climacteric and non-climacteric fruit and the ubiquity of ethylene—An overview

    No full text

    CNS infection and immune privilege

    No full text
    Classically, the CNS is described as displaying immune privilege, as it shows attenuated responses to challenge by alloantigen. However, the CNS does show local inflammation in response to infection. Although pathogen access to the brain parenchyma and retina is generally restricted by physiological and immunological barriers, certain pathogens may breach these barriers. In the CNS, such pathogens may either cause devastating inflammation or benefit from immune privilege in the CNS, where they are largely protected from the peripheral immune system. Thus, some pathogens can persist as latent infections and later be reactivated. We review the consequences of immune privilege in the context of CNS infections and ask whether immune privilege may provide protection for certain pathogens and promote their latency

    CNS infection and immune privilege

    No full text
    corecore