9 research outputs found

    Identification of Contractile Vacuole Proteins in Trypanosoma cruzi

    Get PDF
    Contractile vacuole complexes are critical components of cell volume regulation and have been shown to have other functional roles in several free-living protists. However, very little is known about the functions of the contractile vacuole complex of the parasite Trypanosoma cruzi, the etiologic agent of Chagas disease, other than a role in osmoregulation. Identification of the protein composition of these organelles is important for understanding their physiological roles. We applied a combined proteomic and bioinfomatic approach to identify proteins localized to the contractile vacuole. Proteomic analysis of a T. cruzi fraction enriched for contractile vacuoles and analyzed by one-dimensional gel electrophoresis and LC-MS/MS resulted in the addition of 109 newly detected proteins to the group of expressed proteins of epimastigotes. We also identified different peptides that map to at least 39 members of the dispersed gene family 1 (DGF-1) providing evidence that many members of this family are simultaneously expressed in epimastigotes. Of the proteins present in the fraction we selected several homologues with known localizations in contractile vacuoles of other organisms and others that we expected to be present in these vacuoles on the basis of their potential roles. We determined the localization of each by expression as GFP-fusion proteins or with specific antibodies. Six of these putative proteins (Rab11, Rab32, AP180, ATPase subunit B, VAMP1, and phosphate transporter) predominantly localized to the vacuole bladder. TcSNARE2.1, TcSNARE2.2, and calmodulin localized to the spongiome. Calmodulin was also cytosolic. Our results demonstrate the utility of combining subcellular fractionation, proteomic analysis, and bioinformatic approaches for localization of organellar proteins that are difficult to detect with whole cell methodologies. The CV localization of the proteins investigated revealed potential novel roles of these organelles in phosphate metabolism and provided information on the potential participation of adaptor protein complexes in their biogenesis

    Methods to Investigate Signal Transduction Pathways in Trypanosoma cruzi: Cyclic Nucleotide Phosphodiesterases Assay Protocols

    No full text
    Intracellular levels of cyclic nucleotide second messengers are regulated predominantly by a large superfamily of phosphodiesterases (PDEs). Most of the different PDE variants play specific physiological functions; in fact, PDEs can associate with other proteins allowing them to be strategically anchored throughout the cell. In this regard, precise cellular expression and compartmentalization of these enzymes produce the specific control of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) gradients in cells and enable their integration with other signaling pathways. In trypanosomatids, some PDEs are essential for their survival and play fundamental roles in the adaptation of these parasites to different environmental stresses, as well as in the differentiation between their different life cycle forms. Given that these enzymes not only are similar to human PDEs but also have differential biochemical properties, and due to the great knowledge of drugs that target human PDEs, trypanosomatid PDEs could be postulated as important therapeutic targets through the repositioning of drugs. In this chapter, we describe a simple and sensitive radioisotope-based method to measure cyclic 3′,5′-nucleotide phosphodiesterase using [3H]cAMP.Fil: Schoijet, Alejandra Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Sternlieb, Tamara. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Alonso, Guillermo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentin
    corecore