23 research outputs found

    Minimal in vivo efficacy of iminosugars in a lethal Ebola virus guinea pig model

    Get PDF
    The antiviral properties of iminosugars have been reported previously in vitro and in small animal models against Ebola virus (EBOV); however, their effects have not been tested in larger animal models such as guinea pigs. We tested the iminosugars N-butyl-deoxynojirimycin (NB-DNJ) and N-(9-methoxynonyl)-1deoxynojirimycin (MON-DNJ) for safety in uninfected animals, and for antiviral efficacy in animals infected with a lethal dose of guinea pig adapted EBOV. 1850 mg/kg/day NB-DNJ and 120 mg/kg/day MON-DNJ administered intravenously, three times daily, caused no adverse effects and were well tolerated. A pilot study treating infected animals three times within an 8 hour period was promising with 1 of 4 infected NB-DNJ treated animals surviving and the remaining three showing improved clinical signs. MON-DNJ showed no protective effects when EBOV-infected guinea pigs were treated. On histopathological examination, animals treated with NB-DNJ had reduced lesion severity in liver and spleen. However, a second study, in which NB-DNJ was administered at equally-spaced 8 hour intervals, could not confirm drug-associated benefits. Neither was any antiviral effect of iminosugars detected in an EBOV glycoprotein pseudotyped virus assay. Overall, this study provides evidence that NB-DNJ and MON-DNJ do not protect guinea pigs from a lethal EBOV-infection at the dose levels and regimens tested. However, the one surviving animal and signs of improvements in three animals of the NB-DNJ treated cohort could indicate that NB-DNJ at these levels may have a marginal beneficial effect. Future work could be focused on the development of more potent iminosugars

    Experiences of mental illness stigma, prejudice and discrimination: A review of measures

    Get PDF
    Background: There has been a substantial increase in research on mental illness related stigma over the past 10 years, with many measures in use. This study aims to review current practice in the survey measurement of mental illness stigma, prejudice and discrimination experienced by people who have personal experience of mental illness. We will identify measures used, their characteristics and psychometric properties. Method. A narrative literature review of survey measures of mental illness stigma was conducted. The databases Medline, PsychInfo and the British Nursing Index were searched for the period 1990-2009. Results: 57 studies were included in the review. 14 survey measures of mental illness stigma were identified. Seven of the located measures addressed aspects of perceived stigma, 10 aspects of experienced stigma and 5 aspects of self-stigma. Of the identified studies, 79% used one of the measures of perceived stigma, 46% one of the measures of experienced stigma and 33% one of the measures of self-stigma. All measures presented some information on psychometric properties. Conclusions: The review was structured by considering perceived, experienced and self stigma as separate but related constructs. It provides a resource to aid researchers in selecting the measure of mental illness stigma which is most appropriate to their purpose. © 2010 Brohan et al; licensee BioMed Central Ltd

    Targeting a host process as an antiviral approach against dengue virus

    No full text
    The re-emergence of dengue virus as a significant human pathogen has lead to an increasing need for effective antivirals. Development of therapeutic agents with the ability to attenuate both the duration and severity of disease in patients after infection is particularly desirable in dengue endemic resource-poor settings. The reliance of dengue virus on endogenous processes during the late stages of infection prompts the development of molecules to interfere with and exploit these dependencies as potential antiviral therapies. Here we focus on the importance of N-linked glycan processing in infectious virion morphogenesis

    Glucocorticosteroids as dengue therapeutics: resolving clinical observations with a primary human macrophage model.

    Get PDF
    A recent trial [1] investigated the use of a glucocorticosteroid, prednisolone, as a therapy for reduction of severe dengue disease. Many pathogens induce accelerated or excessive inflammation, resulting in detrimental rather than protective effects [2], and dengue virus is a well-characterized example of this phenomenon. Several soluble mediators of the innate inflammatory response have been linked with severe pathology [3]; however, these studies are largely correlative and have failed to elucidate molecular mechanisms facilitating specific pathologies. Nevertheless, continued observation of excessive inflammation concurrent with a drop in viremia and development of severe symptoms [4, 5] has prompted several previous attempts at immunosuppressive strategies as a means of reducing severe dengue disease [6–9

    Iminosugars: promising therapeutics for influenza infection

    No full text
    Influenza virus causes three to five million severe respiratory infections per year in seasonal epidemics, and sporadic pandemics, three of which occurred in the 20th century and are a continuing global threat. Currently licensed antivirals exclusively target the viral neuraminidase or M2 ion channel, and emerging drug resistance necessitates the development of novel therapeutics. It is believed that a host-targeted strategy may combat the development of antiviral drug resistance. To this end, a class of molecules known as iminosugars, hydroxylated carbohydrate mimics with the endocyclic oxygen atom replaced by a nitrogen atom, are being investigated for their broad-spectrum antiviral potential. The influenza virus glycoproteins, haemagglutinin and neuraminidase, are susceptible to inhibition of endoplasmic reticulum α-glucosidases by certain iminosugars, leading to reduced virion production or infectivity, demonstrated by in vitro and in vivo studies. In some experiments, viral strain-specific effects are observed. Iminosugars may also inhibit other host and virus targets with antiviral consequences. While investigations of anti-influenza iminosugar activities have been conducted since the 1980s, recent successes of nojirimycin derivatives have re-invigorated investigation of the therapeutic potential of iminosugars as orally available, low cytotoxicity, effective anti-influenza drugs

    Iminosugars: promising therapeutics for influenza infection

    No full text
    Influenza virus causes three to five million severe respiratory infections per year in seasonal epidemics, and sporadic pandemics, three of which occurred in the 20th century and are a continuing global threat. Currently licensed antivirals exclusively target the viral neuraminidase or M2 ion channel, and emerging drug resistance necessitates the development of novel therapeutics. It is believed that a host-targeted strategy may combat the development of antiviral drug resistance. To this end, a class of molecules known as iminosugars, hydroxylated carbohydrate mimics with the endocyclic oxygen atom replaced by a nitrogen atom, are being investigated for their broad-spectrum antiviral potential. The influenza virus glycoproteins, haemagglutinin and neuraminidase, are susceptible to inhibition of endoplasmic reticulum α-glucosidases by certain iminosugars, leading to reduced virion production or infectivity, demonstrated by in vitro and in vivo studies. In some experiments, viral strain-specific effects are observed. Iminosugars may also inhibit other host and virus targets with antiviral consequences. While investigations of anti-influenza iminosugar activities have been conducted since the 1980s, recent successes of nojirimycin derivatives have re-invigorated investigation of the therapeutic potential of iminosugars as orally available, low cytotoxicity, effective anti-influenza drugs

    Pathogen-induced inflammation is attenuated by the iminosugar MON-DNJ via modulation of the unfolded protein response

    No full text
    Sepsis is a life-threatening condition involving a dysregulated immune response to infectious agents that causes injury to host tissues and organs. Current treatments are limited to early administration of antibiotics and supportive care. While appealing, the strategy of targeted inhibition of individual molecules in the inflammatory cascade has not proved beneficial. Non-targeted, systemic immunosuppression with steroids has shown limited efficacy and raises concern for secondary infection. Iminosugars are a class of small molecule glycomimetics with distinct inhibition profiles for glycan processing enzymes based on stereochemistry. Inhibition of host endoplasmic reticulum resident glycoprotein processing enzymes has demonstrated efficacy as a broad spectrum antiviral strategy, but limited consideration has been given to the effects on host glycoprotein production and consequent disruption of signaling cascades. This work demonstrates that iminosugars inhibit dengue virus, bacterial lipopolysaccharide, and fungal antigen stimulated cytokine responses in human macrophages. In spite of decreased inflammatory mediator production, viral replication is suppressed in the presence of iminosugar. Transcriptome analysis reveals the key interaction of pathogen-induced endoplasmic reticulum stress, the resulting unfolded protein response, and inflammation. Our work shows that iminosugars modulate these interactions. Based on these findings, we propose a new therapeutic role for iminosugars as treatment for sepsis related inflammatory disorders associated with excess cytokine secretion

    Liposome-mediated delivery of iminosugars enhances efficacy against dengue virus in vivo.

    No full text
    A key challenge faced by promising antiviral drugs, such as iminosugars, is in vivo delivery to achieve effective levels of drug without toxicity. Four iminosugars, all deoxynojirimycin (DNJ) derivatives-N-butyl DNJ (NB-DNJ), N-nonyl DNJ, N-(9-methoxynonyl) DNJ, and N-(6'-[4″-azido-2″-nitrophenylamino]hexyl)-1-DNJ (NAP-DNJ)-potently inhibited both the percentage of cells infected with dengue virus and release of infectious virus from primary human monocyte-derived macrophages, demonstrating their efficacy in primary cells. In a lethal antibody-dependent enhancement mouse model of dengue pathogenesis, free NB-DNJ significantly enhanced survival and lowered viral load in organs and serum. Liposome-mediated delivery of NB-DNJ, in comparison with free NB-DNJ, resulted in a 3-log(10) reduction in the dose of drug sufficient to enhance animal survival. The optimizing of the effective dose in this way could liberate the therapeutic potential of many cytotoxic antivirals against both dengue virus and a wide array of other viruses

    ToP-DNJ, a selective inhibitor of endoplasmic reticulum α-glucosidase II exhibiting anti-flaviviral activity

    No full text
    Iminosugars have therapeutic potential against a range of diseases, due to their efficacy as glycosidase inhibitors. A major challenge in the development of iminosugar drugs lies in making a compound that is selective for the glycosidase associated with a given disease. We report the synthesis of ToP-DNJ, an antiviral iminosugar-tocopherol conjugate. Tocopherol was incorporated into the design of the iminosugar in order to direct the drug to the liver and immune cells, specific tissues of interest for antiviral therapy. ToP-DNJ inhibits ER α-glucosidase II at low micromolar concentrations and selectively accumulated in the liver in vivo. In cellular assays, the drug showed efficacy exclusively in immune cells of the myeloid lineage. Taken together, these data demonstrate that inclusion of a native metabolite into an iminosugar provides selectivity with respect to target enzyme, target cell and target tissue

    ToP-DNJ, a selective inhibitor of endoplasmic reticulum α-glucosidase II exhibiting anti-flaviviral activity

    No full text
    Iminosugars have therapeutic potential against a range of diseases, due to their efficacy as glycosidase inhibitors. A major challenge in the development of iminosugar drugs lies in making a compound that is selective for the glycosidase associated with a given disease. We report the synthesis of ToP-DNJ, an antiviral iminosugar-tocopherol conjugate. Tocopherol was incorporated into the design of the iminosugar in order to direct the drug to the liver and immune cells, specific tissues of interest for antiviral therapy. ToP-DNJ inhibits ER α-glucosidase II at low micromolar concentrations and selectively accumulated in the liver in vivo. In cellular assays, the drug showed efficacy exclusively in immune cells of the myeloid lineage. Taken together, these data demonstrate that inclusion of a native metabolite into an iminosugar provides selectivity with respect to target enzyme, target cell and target tissue
    corecore