14 research outputs found

    The alarmin IL-1α is a master cytokine in acute lung inflammation induced by silica micro- and nanoparticles

    Get PDF
    BackgroundInflammasome-activated IL-1ß plays a major role in lung neutrophilic inflammation induced by inhaled silica. However, the exact mechanisms that contribute to the initial production of precursor IL-1ß (pro-IL-1ß) are still unclear. Here, we assessed the implication of alarmins (IL-1¿, IL-33 and HMGB1) in the lung response to silica particles and found that IL-1¿ is a master cytokine that regulates IL-1ß expression.MethodsPro- and mature IL-1ß as well as alarmins were assessed by ELISA, Western Blot or qRT-PCR in macrophage cultures and in mouse lung following nano- and micrometric silica exposure. Implication of these immune mediators in the establishment of lung inflammatory responses to silica was investigated in knock-out mice or after antibody blockade by evaluating pulmonary neutrophil counts, CXCR2 expression and degree of histological injury.ResultsWe found that the early release of IL-1¿ and IL-33, but not HMGB1 in alveolar space preceded the lung expression of pro-IL-1ß and neutrophilic inflammation in silica-treated mice. In vitro, the production of pro-IL-1ß by alveolar macrophages was significantly induced by recombinant IL-1¿ but not by IL-33. Neutralization or deletion of IL-1¿ reduced IL-1ß production and neutrophil accumulation after silica in mice. Finally, IL-1¿ released by J774 macrophages after in vitro exposure to a range of micro- and nanoparticles of silica was correlated with the degree of lung inflammation induced in vivo by these particles.ConclusionsWe demonstrated that in response to silica exposure, IL-1¿ is rapidly released from pre-existing stocks in alveolar macrophages and promotes subsequent lung inflammation through the stimulation of IL-1ß production. Moreover, we demonstrated that in vitro IL-1¿ release from macrophages can be used to predict the acute inflammogenic activity of silica micro- and nanoparticles

    Beyond genomics: understanding exposotypes through metabolomics

    Get PDF
    Abstract Background Over the past 20 years, advances in genomic technology have enabled unparalleled access to the information contained within the human genome. However, the multiple genetic variants associated with various diseases typically account for only a small fraction of the disease risk. This may be due to the multifactorial nature of disease mechanisms, the strong impact of the environment, and the complexity of gene-environment interactions. Metabolomics is the quantification of small molecules produced by metabolic processes within a biological sample. Metabolomics datasets contain a wealth of information that reflect the disease state and are consequent to both genetic variation and environment. Thus, metabolomics is being widely adopted for epidemiologic research to identify disease risk traits. In this review, we discuss the evolution and challenges of metabolomics in epidemiologic research, particularly for assessing environmental exposures and providing insights into gene-environment interactions, and mechanism of biological impact. Main text Metabolomics can be used to measure the complex global modulating effect that an exposure event has on an individual phenotype. Combining information derived from all levels of protein synthesis and subsequent enzymatic action on metabolite production can reveal the individual exposotype. We discuss some of the methodological and statistical challenges in dealing with this type of high-dimensional data, such as the impact of study design, analytical biases, and biological variance. We show examples of disease risk inference from metabolic traits using metabolome-wide association studies. We also evaluate how these studies may drive precision medicine approaches, and pharmacogenomics, which have up to now been inefficient. Finally, we discuss how to promote transparency and open science to improve reproducibility and credibility in metabolomics. Conclusions Comparison of exposotypes at the human population level may help understanding how environmental exposures affect biology at the systems level to determine cause, effect, and susceptibilities. Juxtaposition and integration of genomics and metabolomics information may offer additional insights. Clinical utility of this information for single individuals and populations has yet to be routinely demonstrated, but hopefully, recent advances to improve the robustness of large-scale metabolomics will facilitate clinical translation

    The complex cascade of cellular events governing inflammasome activation and IL-1β processing in response to inhaled particles

    Get PDF
    The innate immune system is the first line of defense against inhaled particles. Macrophages serve important roles in particle clearance and inflammatory reactions. Following recognition and internalization by phagocytes, particles are taken up in vesicular phagolysosomes. Intracellular phagosomal leakage, redox unbalance and ionic movements induced by toxic particles result in pro-IL-1β expression, inflammasome complex engagement, caspase-1 activation, pro-IL-1β cleavage, biologically-active IL-1β release and finally inflammatory cell death termed pyroptosis. In this review, we summarize the emerging signals and pathways involved in the expression, maturation and secretion of IL-1β during these responses to particles. We also highlight physicochemical characteristics of particles (size, surface and shape) which determine their capacity to induce inflammasome activation and IL-1β processing
    corecore