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Abstract

BackgroundInflammasome-activated IL-1ß plays a major role in lung neutrophilic
inflammation induced by inhaled silica. However, the exact mechanisms that
contribute to the initial production of precursor IL-1ß (pro-IL-1ß) are still unclear.
Here, we assessed the implication of alarmins (IL-1¿, IL-33 and HMGB1) in the
lung response to silica particles and found that IL-1¿ is a master cytokine that
regulates IL-1ß expression.MethodsPro- and mature IL-1ß as well as alarmins
were assessed by ELISA, Western Blot or qRT-PCR in macrophage cultures and
in mouse lung following nano- and micrometric silica exposure. Implication of
these immune mediators in the establishment of lung inflammatory responses to
silica was investigated in knock-out mice or after antibody blockade by evaluating
pulmonary neutrophil counts, CXCR2 expression and degree of histological
injury.ResultsWe found that the early release of IL-1¿ and IL-33, but not HMGB1
in alveolar space preceded the lung expression ...
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Abstract

Background: Inflammasome-activated IL-1β plays a major role in lung neutrophilic inflammation induced by inhaled
silica. However, the exact mechanisms that contribute to the initial production of precursor IL-1β (pro-IL-1β) are still
unclear. Here, we assessed the implication of alarmins (IL-1α, IL-33 and HMGB1) in the lung response to silica particles
and found that IL-1α is a master cytokine that regulates IL-1β expression.

Methods: Pro- and mature IL-1β as well as alarmins were assessed by ELISA, Western Blot or qRT-PCR in macrophage
cultures and in mouse lung following nano- and micrometric silica exposure. Implication of these immune mediators
in the establishment of lung inflammatory responses to silica was investigated in knock-out mice or after antibody
blockade by evaluating pulmonary neutrophil counts, CXCR2 expression and degree of histological injury.

Results: We found that the early release of IL-1α and IL-33, but not HMGB1 in alveolar space preceded the lung
expression of pro-IL-1β and neutrophilic inflammation in silica-treated mice. In vitro, the production of pro-IL-1β by
alveolar macrophages was significantly induced by recombinant IL-1α but not by IL-33. Neutralization or deletion of
IL-1α reduced IL-1β production and neutrophil accumulation after silica in mice. Finally, IL-1α released by J774
macrophages after in vitro exposure to a range of micro- and nanoparticles of silica was correlated with the degree of
lung inflammation induced in vivo by these particles.

Conclusions: We demonstrated that in response to silica exposure, IL-1α is rapidly released from pre-existing stocks
in alveolar macrophages and promotes subsequent lung inflammation through the stimulation of IL-1β production.
Moreover, we demonstrated that in vitro IL-1α release from macrophages can be used to predict the acute
inflammogenic activity of silica micro- and nanoparticles.
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Background
Inhalation of micrometric and nanometric particles can
lead to pulmonary diseases characterized by inflamma-
tion, fibrosis and/or cancer. Pulmonary inflammation in-
duced by inhaled particles is characterized by a marked

accumulation of neutrophils which secrete large quantities
of reactive oxygen metabolites, granule enzymes and pro-
inflammatory mediators [1,2]. It has been demonstrated
that the pro-inflammatory cytokine interleukin-1β (IL-1β)
drives particle-induced inflammation by enhancing gran-
ulocyte migration and accumulation to inflammatory sites
[3-5]. Mature IL-1β release in the extracellular environ-
ment requires several steps including the production of
the biologically inactive IL-1β pro-form (pro-IL-1β) con-
secutive to Il1b gene transcription as well as its maturation
and exocytosis through the NLRP3 inflammasome machi-
nery. Pro-IL-1β production could result from cellular
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detection of pathogen components, PAMPs, or from
pro-inflammatory cytokines. Also, IL-1β positively auto-
regulates its own synthesis via NFκb binding activity [6].
Several studies have demonstrated that K+ efflux, cyto-

solic release of lysosomal cathepsins and mitochondria-
derived factors such as reactive oxygen species (ROS)
are involved in the NLRP3 inflammasome assembly and
activation by micro- and nanoparticles [7-11]. It is,
however, surprising that the signal(s) triggering NFκb-
mediated up-regulation of pro-IL-1β after particle exposure
remain(s) unknown [12,13]. The identification of a com-
mon element that initiates pro-IL-1β production in re-
sponse to particles would be useful to understand their
inflammatory properties and to predict their inflamma-
tory potential.
The alarmin family comprises structurally distinct en-

dogenous mediators including defensins, cathelicidins,
eosinophil-associated ribonucleases, heat shock proteins
(HSP), saposin-like granulysin, ion-binding proteins (e.g.,
S100 proteins and lactoferrin), and nucleotides/metabo-
lites (e.g., uric acid) [14]. Additionally, some constitutive
cytokines that possess intracellular functions such as IL-
1α, IL-33 and High Mobility Group Box 1 (HMGB1) are
also considered as alarmins [5,15-18]. Alarmins are pas-
sively released from necrotic cells upon infection and
tissue injury or rapidly secreted by stimulated leuko-
cytes. Alarmins play important intracellular roles in
homeostasis and when released extracellularly strongly
promote leukocyte cell recruitment and activation as
well as tissue repair. This occurs for instance in response
to sterile injury or infection [19].
IL-1α and IL-33 are produced as pro-form but contrary

to IL-1β, these precursors are already active. Upon cell ne-
crosis, the released IL-1α, IL-33 and HMGB1 alarmins
alone or complexed to other molecules bind their respect-
ive receptors (IL-1R1, ST2 and RAGE, TLR2 or TLR4)
and promote pro-inflammatory gene transcription via the
NFκb pathway [16]. We thus hypothesized that lung injury
induced by toxic particles leads to the release of intracellu-
lar alarmins which can induce pro-IL-1β production and
subsequent inflammatory processes.
In this study, we identified the initial events leading to

the lung inflammatory response to inhaled particles and
found that the constitutively available alarmin IL-1α is
rapidly released in alveolar space in response to silica ex-
posure, before IL-1β induction and pulmonary neutro-
phil influx. We demonstrated that IL-1α can directly
induce pro-IL-1β production by alveolar macrophages
and that its neutralization impairs silica-induced lung
IL-1β release and inflammation. Finally, we identified
macrophages as a main source of IL-1α in the lung and
developed an in vitro assay to evaluate the inflammo-
genic activity of nano- and micrometric particles based
on their capacity to release IL-1α from macrophages.

Results
The early release of the endogenous IL-1α and IL-33
alarmins precedes silica-induced IL-1β production and
neutrophilic inflammation in mice
In order to explore the implication of alarmins in
particle-induced IL-1β production in the lung, we first
measured in broncho-alveolar lavage fluid (BALF) and
lung tissue the protein and gene expression of IL-1α, IL-
33 and HMGB1 at different time points after an inflam-
matory dose of micrometric crystalline silica (DQ12,
2.5 mg) [20,21]. One hour after silica administration, IL-
1α and IL-33 protein levels were already significantly in-
creased in BALF. This release peaked at 6 and 12 hours
and progressively returned to control values at 24 hours
(Figure 1a and b). Silica did not affect BALF HMGB1
levels (Additional file 1: Figure S1a). An increase of lung
IL-1α, IL-33 and HMGB1 transcript contents was only
observed from 6 hours after silica administration and
this effect was maintained up to 24 hours (Additional
file 1: Figure S1d, e and f). These data suggest that pre-
existing stocks of IL-1α and IL-33 protein are rapidly re-
leased in the lung after silica.
The early lung release (1 h) of IL-1α and IL-33 after

silica preceded the increased expression of pro-IL-1β
and the release of mature IL-1β. Indeed, the levels of
lung IL-1β transcripts (Figure 1c) and BALF IL-1β pro-
tein (Additional file 1: Figure S1b) were mainly increased
between 6 and 24 hours following instillation. Cellular
lung inflammation was first monitored by BAL total cell
and neutrophil (GR1+ cells) counts. Neutrophil accumu-
lation was also quantified by assessing lung expression
of CXCR2. Although the expression of this chemokine
receptor has been reported in macrophages, CXCR2 is
mainly expressed by recruited neutrophils and can be
used as a biomarker of neutrophilic inflammation [22].
Akin biochemical parameters (Additional file 1: Figure S1c),
cellular inflammation was obvious 6 hours after silica and
persisted until 24 hours (Figure 1d to f). These data sug-
gested that the rapid release of the intracellular stocks of
IL-1α and IL-33 contributes to IL-1β production and neu-
trophilic inflammation following silica exposure.

The alarmin IL-1α induces pro-IL-1β production in alveolar
macrophages
We next tested whether the alarmins IL-1α and IL-33
can directly activate the in vitro expression of pro-IL-1β.
First, we determined the main cellular source of IL-1β in
the lung of mice following silica exposure. IL-1β produc-
tion is well defined in immune cells but other sources
such as epithelial cells have been recently identified
[23,24]. Therefore, we purified structural (epithelial cells
and fibroblasts) and immune cells (i.e. T and B lympho-
cytes, dendritic cells and macrophages) from the lung
of silica-treated mice and measured their pro-IL-1β
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intracellular contents. Lymphocytes and structural cells
produced little amount of pro-IL-1β after silica expos-
ure. Alveolar macrophages and dendritic cells pro-
duced high levels of pro-IL-1β and were the major cell
populations expressing IL-1β in silica treated mice
(Figure 2a). We also verified that silica alone did not
immediately stimulate pro-IL-1β synthesis in primary
lung macrophage cultures (Figure 2b). Interestingly, re-
combinant IL-1α induced a dose-dependent pro-IL-1β
production by alveolar macrophages as appreciated by
ELISA (Figure 2c) and western blot analysis (Figure 2d).
After recombinant IL-33 addition, a slight but not
dose-dependent increase of pro-IL-1β levels was
observed by ELISA (Figure 2e) but not by WB analysis
(Figure 2f). As expected, the addition of recombinant
mature IL-1β in macrophage cultures dose-dependently
induced the expression of its pro-form (Figure 2g). At
the same concentration, recombinant IL-1α and IL-1β
but not IL-33 induced similar production of pro-IL-1β
by alveolar macrophages (Figure 2h). Several forms of
recombinant HMGB1 [25,26] had no effect on pro-IL-
1β expression when added to macrophages (data not
shown). Altogether, these results indicated that the alar-
min IL-1α and mature IL-1β strongly stimulate pro-IL-
1β production by alveolar macrophages.

The alarmin IL-1α is necessary for IL-1β production in
response to silica particles in the mouse lung
Because IL-1α release preceded the expression of IL-1β
in silica-treated mice (Figure 1a and c), we then de-
lineated the implication of IL-1α on silica-induced pro-
IL-1β production and mature IL-1β release by examining
the secretion of IL-1β after silica treatment in mice lack-
ing IL-1α. The genetic absence of IL-1α abrogated pro-
and mature IL-1β expression (Figure 3a and b) in
response to silica. Injection of neutralizing antibodies
directed against IL-1α [27,28] also markedly decreased
the levels of IL-1β transcript (Figure 3c) and protein
(Figure 3d) in response to silica. These data strongly in-
dicated that the rapid release of IL-1α promotes IL-1β
production in the lung of silica-treated mice.

The alarmin IL-1α contributes to neutrophilic inflammation
in response to silica particles in the lung of mice
We next determined the role of IL-1α in the develop-
ment of lung inflammation induced by silica by exami-
ning neutrophil accumulation. First, we confirmed the
pivotal role of IL-1β in lung inflammation development
since neutrophil influx after silica was significantly im-
paired after IL-1β inactivation (KO and blocking anti-
bodies, Figure 4a-f ). Genetic deletion of Il1a resulted in

Figure 1 Silica induces IL-1α and IL-33 release in the lung before IL-1β production and neutrophilic inflammation. Levels of (a) IL-1α and (b)
IL-33 in BAL fluid collected at different time points after silica (crystalline DQ12, 2.5 mg) or not (control). Pulmonary expression of (c) pro-IL-1β quantified
by qRT-PCR at different time points after instillation of silica or not. Number of alveolar (d) total cells and (e) neutrophils (GR1+ cells) assessed by flow
cytometry. (f) Expression of the pulmonary neutrophilic CXCR2 marker quantified by qRT-PCR at different time points after silica or not. Values are
means ? SEM of 3 to 8 animals. *p < 0.05, **p < 0.01 and ***p < 0.001 denote significant difference between animals treated with silica or not; ns,
denotes no significant difference. P-values are estimated by t-test.
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Figure 2 (See legend on next page.)
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a deeper and more complete inhibition of cellular inflam-
mation as appreciated by inflammatory cell and neutrophil
accumulation (Figure 4a and b), CXCR2 expression
(Figure 4c) as well as histological analyses (Figure 4f ).
Antibody inactivation confirmed the major implication
of IL-1α in silica-induced neutrophilic inflammation
(Figure 4d-f ). Altogether, these data indicated that the
alarmin IL-1α indirectly promotes particle-induced lung
inflammation through the induction of IL-1β produc-
tion but also possesses a direct inflammatory activity.

The in vitro release of IL-1α by macrophages upon
particle exposure predicts the in vivo inflammatory
activity of the particles
In vivo, IL-1α release upon silica exposure was strongly as-
sociated with the subsequent lung inflammatory response.

We thus wondered whether the capacity of particles to in-
duce IL-1α cell release determines their inflammatory ac-
tivity and whether it can be used in vitro to predict their
toxicity. To test this hypothesis, we first determined the
cellular source of the alarmin IL-1α and assessed in vivo
and in vitro its release in response to particles. Intracellu-
lar IL-1α content was measured in different structural and
immune lung cell populations from na?ve or silica-treated
mice. Among pulmonary resident cells, only macrophages
contained significant amounts of IL-1α in control animals
(Figure 5a). After silica treatment, alveolar macrophages
contained and released high amount of IL-1α (Figure 5b
and c). To a lesser extent, dendritic cells and B lympho-
cytes also produced and released IL-1α after silica instilla-
tion. Moreover, freshly purified alveolar macrophages
from na?ve mice released IL-1 α in the medium in response

(See figure on previous page.)
Figure 2 IL-1-induced pro-IL-1β production in alveolar macrophages. (a) Intracellular levels of pro-IL-1β in structural cells (CD45- cells), T
(CD5+ cells) and B (B220+ cells) lymphocytes, dendritic cells (F4/80- CD11c+ cells) and alveolar macrophages (F4/80+) purified from lungs 3 hours
after silica instillation (crystalline DQ12, 2.5 mg). n = 2 to 6. (b) Intracellular levels of pro-IL-1β in primary cultured alveolar macrophages exposed
overnight to LPS (0.1 μg/ml) or silica (DQ12). n = 4. Intracellular levels of pro-IL-1β in primary cultured lung macrophages exposed overnight to
LPS (0.1 μg/ml) or recombinant IL-1α, IL-33 or IL-1β in different experiments ((c), (e) and (g) respectively) or in the same experiment (10 ng/ml)
(h). n = 3 to 5. Western blot analysis of intracellular pro-IL-1β and β-actin in primary cultured alveolar macrophages exposed during 18 hours to
LPS (0.1 μg/ml), (d) recombinant IL-1α or (f) IL-33. Values are means ? SEM. **p < 0.01 and ***p < 0.001 denotes significant difference between
cells in DMEM and cells exposed to LPS, silica, recombinant IL-1α, recombinant IL-33 or recombinant IL-1β; ns, denotes no significant difference.
P-values are estimated by t-test.

Figure 3 IL-1α inhibition reduces IL-1β production in lung of silica-treated mice. (a) Pulmonary expression of pro-IL-1β quantified by
qRT-PCR and (b) levels of mature IL-1β in BAL fluid of WT and IL-1α KO mice, 24 hours after instillation of silica (crystalline DQ12, 2.5 mg) or not
(control). (c) Pulmonary expression of pro-IL-1β quantified by qRT-PCR and (d) levels of mature IL-1β in BAL fluid 18 hours after silica or not, in
mice treated with IL-1α neutralizing antibody or not. Values are means ? SEM of 3 to 8 animals. **p < 0.01 denote significant difference between
animals treated or not with silica. # p < 0.05, ## p < 0.01 denote significant difference between silica-treated animals with decreased or unmodified
IL-1α. P-values are estimated by t-test.
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Figure 4 IL-1α and IL-1β inhibition reduces neutrophilic inflammation in lung of silica-treated mice. (a) Number of alveolar total cells in
WT, IL-1α KO or IL-1β KO mice 24 hours after instillation of silica (crystalline DQ12, 2.5 mg) or not (control). (b) Number of alveolar neutrophils
(GR1+ cells) assessed by flow cytometry and (c) expression of the pulmonary neutrophilic CXCR2 marker quantified by qRT-PCR in WT, IL-1α KO
or IL-1β KO mice 24 hours after instillation of silica or not. Number of alveolar (d) total cells and (e) neutrophils in WT mice treated with anti-IL-1α or
IL-1β neutralizing antibodies or not 18 hours after silica or not. (f) Hematoxylin and eosin-stained lung sections obtained from untreated WT mice or
after silica instillation of WT, IL-1α KO and IL-1β KO mice or from untreated mice or after silica instillation of mice injected or not with anti-IL-1α or
anti-IL-1β antibodies. Scale bars = 200 μm (large panels) and 100 μm (inserts). Values are means ? SEM of 3 to 5 animals. **p < 0.01 and ***p < 0.001
denote significant difference between animals treated with silica or not. # p < 0.05, ## p < 0.01 and ### p < 0.001 denote significant difference between
silica-treated animals with decreased or unmodified IL-1α or IL-1β activity. $$ p < 0.01 denote significant difference in values between IL-1α KO and
IL-1β KO silica-treated animals. Ns, denotes no significant difference between silica-treated animals with decreased or unmodified IL-1α or IL-1β activity.
P-values are estimated by t-test.
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Figure 5 (See legend on next page.)

Rabolli et al. Particle and Fibre Toxicology 2014, 11:69 Page 7 of 15
http://www.particleandfibretoxicology.com/content/11/1/69



to silica exposure (Figure 5d). These data indicated that al-
veolar macrophages represent the main IL-1α-secreting
lung cells and can be used to assess the alarmin IL-1α re-
lease in response to silica in vitro.
In order to develop an in vitro screening test, we next

assessed the intracellular IL-1α content in murine
macrophage (J774), fibroblast (MLg) and epithelial (LA-4)
cell lines. Results on cell lines confirmed observations
made on primary lung cells, i.e. that macrophages possess
high constitutive IL-1α content, contrary to fibroblastic
and epithelial cells (Figure 5e). We then compared IL-1α
released by J774 in response to increasing amounts of
different silica particles: micrometric crystalline silica
(DQ12), micrometric amorphous silica (Vitreous Silica;
VS), and two different amorphous nanosilica (St?ber
and Aerosil 200) (Figure 5f ). While DQ12 silica induced
a slight release of IL-1α in J774 macrophage super-
natant, vitreous and St?ber silica induced a significant
IL-1α release from 2.5 μg of particle per well, while
St?ber-induced IL-1 α release was higher. Finally, Aerosil
200 already induced a significant increase of IL-1α
levels at the dose of 1.2 μg/well. Based on these data, we
concluded that the tested silica particles induce IL-1α
release by J774 macrophages in the following order:
DQ12 < VS < St?ber < Aerosil 200. In parallel, mice were
instilled with 1.2 mg of the 4 silica particles and lung
IL-1α release, neutrophilic accumulation and IL-1β ex-
pression were evaluated. IL-1α concentrations assessed
in BALF 1 hour after particle instillation were increased
as in vitro: DQ12 induced a limited release of IL-1α, VS
and St?ber were associated with a moderate release of
IL-1α while Aerosil induced the strongest IL-1α release
(Figure 5l). Particle-induced inflammatory and neutro-
philic accumulation (Figure 5h-j) and IL-1β production
(Figure 5k) also correlated to in vitro IL-1α release. Cor-
relation analyses between in vitro IL-1α release (20 μg
of particle/well) and in vivo neutrophilic accumulation
induced by the different silica particles confirmed the
clear association between the in vivo lung inflammation

intensity and the IL-1α release (Figure 5m, R2 = 0.9985,
p-value 0.0008). MWCNT, known for their lung inflam-
matory potential [29], also induced IL-1α release from
macrophages (Figure 5g). In conclusion, IL-1α release
by J774 macrophages was predictive of the acute lung
inflammation consecutive to silica particle exposure.

Discussion
Recent evidence demonstrated that NLRP3 inflamma-
some activation by particles is pivotal in the release of
the pro-inflammatory cytokine IL-1β and the development
of lung inflammation [4,7,11]. Particles such as silica acti-
vate the inflammasome platform through potassium-,
cathepsin- and/or ROS-dependent pathways and allow the
release of the cleaved and active IL-1β. The early events
leading to pro-IL-1β production following exposure to
particles are, however, not identified yet. In models of ster-
ile inflammation, damaged and necrotic cells release intra-
cellular stores of biologically active alarmins that initiate
subsequent pro-inflammatory cytokine transcription and
neutrophil recruitment [30,31]. We thus postulated that
early alarmin release due to particle-induced cell damage
can induce pro-IL-1β production and subsequent inflam-
matory reaction. We discovered that IL-1α and IL-33 were
released in response to particle instillation from preexis-
ting cellular stocks. To our knowledge, this is the first time
that early release of these alarmins is evaluated in the gen-
esis of inflammation induced by inorganic particles.
Once in the extracellular environment, IL-1β and IL-

1α both bind to the IL-1R1/IL-1rAcP complex and in-
duce similar effects. However, contrary to IL-1β, IL-1α
does not require maturation and/or exocytosis to be ac-
tive; its precursors form can activate IL-1R1 or translo-
cate to the nucleus where it will modify inflammatory
gene transcription [32]. The role of the IL-1 family in
particle-induced neutrophilic inflammation has been ex-
tensively investigated mainly by using IL-1 signaling
pathway inhibition [3,11] i.e. IL-1Ra (IL-1receptor antag-
onist) administration [33] or inflammasome activation

(See figure on previous page.)
Figure 5 IL-1α release by J774 macrophages after particle exposure predicts acute lung inflammation upon particle treatment in mice.
Intracellular levels of IL-1α in structural cells (CD45- cells), T (CD5+ cells) and B (B220+ cells) lymphocytes, dendritic cells (F4/80- CD11c+ cells) and
alveolar macrophages (F4/80+) freshly purified from (a) untreated lung or (b) 3 hours after silica instillation (crystaline DQ12, 2.5 mg). n = 1 to 6.
(c) Release of IL-1α by structural cells (CD45- cells), T (CD5+ cells) and B (B220+ cells) lymphocytes, dendritic cells (F4/80- CD11c+ cells) and alveolar
macrophages (F4/80+) purified from lungs 3 hours after silica instillation. n = 1 to 6 (d) Release of IL-1α by fresh primary lung macrophages (CD45+ F4/
80+) exposed to silica (overnight). n = 4. (e) Intracellular levels of IL-1α in macrophage (J774), fibroblast (MLg) and epithelial (LA4) cell line. n = 2 to 6. (f)
Release of IL-1α by J774 exposed overnight to increasing concentration of DQ12, Vitreous Silica (VS), St?ber silica nanoparticles (Stober) and Aerosil 200.
n =3 to 4. (g) Release of IL-1α by J774 exposed overnight to various concentration of MWCNT. n =3 to 4. (h) Number of alveolar total cells 24 hours
after particle instillation (1.2 mg) or not. (i) Number of alveolar neutrophils (GR1+ cells) assessed by flow cytometry and (j) expression of the pulmonary
neutrophilic marker CXCR2 quantified by qRT-PCR in mice 24 hours after particle instillation or not. Levels of (k) mature IL-1β or (l) IL-1α in BAL fluid
collected respectively 24 hours or 1 hour after instillation of particles or not. (m) Correlation between alveolar neutrophils (log GR1+ cells) collected
24 hours after particle instillation and levels of IL-1α in supernatant of particle-exposed J774. Values are means ? SEM of 3 to 6 animals. *p < 0.05,
**p < 0.01 and ***p < 0.001 denote significant difference between particle-treated and not animals; ns, denotes no significant difference. P-values are
estimated by t-test. Correlation is calculated based on Pearson coefficient.
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impairment [3,7,34]. Due to their functional redundancy,
these studies do not allow to discriminate between IL-1α or
IL-1β implication. Some reports specifically demonstrated a
tempering effect of IL-1β deficiency on particle-induced in-
flammation [4,5,35,36]. A dominant role of IL-1α compared
to IL-1β has been demonstrated in nano-TiO2-induced
peritonitis and lung neutrophilic inflammation by using IL-
1R-, IL-1α- or inflammasome component-deficient mice
[23]. In the present study, we newly demonstrate the impli-
cation of IL-1α in pro-IL-1β production consecutive to par-
ticle exposure. Indeed, IL-1α stimulated precursor IL-1β
production by macrophages and the absence of this alarmin
abrogated mature IL-1β release upon silica treatment in
mice. This is in accordance with observations of Gross and
co-authors who reported that absence of IL-1α reduced IL-
1β levels measured in response to monosodium urate
(MSU) intraperitoneal injection [5]. Similarly, IL-1α neu-
tralizing antibodies decreased lung IL-1β induction due to
cigarette smoke [37]. The effect of IL-1α on IL-1β induc-
tion was also directly observed on macrophages in vitro
[5,15,32,38-40]. Interestingly, the implication of IL-1α as a
dominant IL-1 cytokine has also been recorded in other
murine models of toxic lung inflammation or peritonitis.
Alveolar and peritoneal neutrophilic accumulation induced
by bleomycin, cigarette smoke or MSU were reduced when
IL-1α response was inhibited [5,27,37,41].
IL-1α is a constitutive and ubiquitary cytokine (reviewed

in [32]) whose release is frequently assessed in epithelial
cells [41,42] or macrophages [15,43,44]. In this paper, we
established that among lung resident cells, macrophages
represent a major source of available IL-1α. We also dem-
onstrated their ability to release IL-1α in response to par-
ticle exposure. Resident macrophages have already been
implicated in IL-1α release under inflammatory conditions
in lung [37], but also in liver [45] and brain [46]. It has
been recently shown that particles-induced pyroptosis, a
lytic mode of cell death that exhibits cytoplasmic swelling
and ruptures of the plasma membrane [47]. It is tempting
to postulate that pyroptosis results in the release of IL-1α
by dying macrophages. In addition, it is surprising to note
that the release of IL-1α by alveolar macrophages exposed
in vitro to silica particles does not result in a direct pro-
duction of pro-IL-1β. IL-1α-releasing macrophages are
dying cells and thus probably unable to newly produce
pro-IL-1β. In vivo, extracellular IL-1α from necrotic mac-
rophages could, however, trigger pro-IL-1β production by
surrounding active macrophages which then propagate
neutrophilic inflammation by processing IL-1β after silica
endocytosis. Finally, amorphous silica particles are gener-
ally regarded as less harmful than the crystalline forms
[48-50]. We showed that amorphous (nano)silica particles
induced stronger IL-1α secretion and inflammation than
crystalline particles. These observations are in line with
the recent conclusions offered by several experimental

studies indicating that some amorphous (nano)silica parti-
cles need to be considered as potent toxic entities [51-55].
We evidenced that IL-33 is released in the lung upon

particle instillation. This alarmin did, however, not par-
ticipate significantly in IL-1β production by lung cells.
We also observed a strong induction of IL-33 mRNA 24
hours after silica instillation, suggesting a possible impli-
cation in later inflammatory processes. Indeed, recent
studies have shown that IL-33 is released in response to
particle administration [56,57] and is implicated in lung
inflammation after 30 days [58-60].
As observed after cristobalite or asbestos exposure

[24,33], it has been recently found that the alarmin HMGB1
was released in alveolar space after MWCNT treatment in
mice [61]. The secreted HMGB1 enhanced IL-1β release
from alveolar macrophages and its neutralization reduced
lung IL-1β content and inflammation in vivo [61]. In con-
trast, we did not observe an increase of HMGB1 alveolar
levels in response to silica and different recombinant forms
of HMGB1 did not stimulate IL-1β production by alveolar
macrophages in vitro. This apparent discrepancy could be
explained by the type of pulmonary cells targeted by the
particles. MWCNT may cause strong cell damage to epi-
thelial cells while silica may preferentially affect macro-
phages. This could result in the activation of different
endogenous danger signal and inflammatory pathways, i.e.
related to HMGB1 or IL-1α, respectively. Importantly,
Jessop and colleagues demonstrated that HMGB1 present
in BAL fluid of MWNCT-treated mice induced IL-1β re-
lease by macrophages while recombinant failed. This suggest
that the complexation with other inflammatory molecules
[62] or the redox status of HMGB1 [25] are mandatory for
HMGB1 inflammatory activity. These modifications may
also prevent HMGB1 recognition by the ELISA assays and
interfere with HMGB1 detection after particle treatment.
The activation of the NFkB pathway leading to il-1b

gene expression is probably not limited to IL-1α. Indeed,
the pro-inflammatory cytokine TNF-α is also known to
induce NFkB activation and IL-1β production [33,63].
Also this cytokine can be released rapidly and inde-
pendently of transcriptional induction [64]. It is well
known that TNF-α is a key factor in the development of
lung inflammation upon particle exposure [33,65-67]. As
for IL-1α, we showed that TNF-α induced the produc-
tion of pro-IL-1β in primary lung macrophages in vitro
(Additional file 1: Figure 2), suggesting that a pleiad of
pro-inflammatory mediators may indirectly amplify the
production of immature IL-1β. Additional investigations
are also needed to better delineate the role the alarmin
S100 and heat shock proteins highly secreted following
particle exposure [68-70].
Increased levels of IL-1 cytokines were reported in pa-

tients suffering from particle-associated inflammatory
diseases such as asbestosis [71] and silicosis [72-74].
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Targeting IL-1β, e.g. through the use of Anakinra (a re-
combinant non-glycosylated version of human IL-1Ra) is
already in use for the clinical treatment of gout and
other IL-1β-related autoimmune diseases [75]. Interest-
ingly, the interaction of Anakinra with the IL-1 receptor
prevents the biological functions of IL-1β but also of
IL-1α. Our data extend this therapeutic possibility in
particle-induced lung inflammation by showing that
blocking the IL-1 α/β pathway significantly reduces the
deleterious influx of neutrophils after particle exposure.
It remains, however, to demonstrate whether IL-1 block-
ade could also be associated with a reduction of particle-
induced lung fibrosis [48]. Indeed, we recently showed
that mice lacking IL-1β, IL-1α or IL-1R and treated with
DQ12 silica presented a reduction of chronic lung
inflammation and granuloma formation compared to
their WT counterparts. However, this strong effect on
inflammatory development was not concomitantly ac-
companied by a reduction of lung fibrosis, suggesting
that inhibiting IL-1-driven inflammation may not be suf-
ficient to control the fibrotic lung disease after particle
exposure [76].
Finally, we showed that IL-1α release by the macro-

phage J774 cell line is highly predictive of the acute
inflammogenic potential of silica micro- and nanoparti-
cles. These results are in agreement with other studies
that demonstrated the predictive value of IL-1α release
to screen the skin irritative potential of various chemi-
cals [77-80]. Hence, the in vivo inflammatory response
to silica can be predicted by a simple and quantitative
model based on in vitro release of IL-1α by cell line
macrophages. This model may serve in (nano)toxicology
to predict the in vivo toxicity of new materials and parti-
cles and to reduce animal uses.

Conclusion
The present study clarifies the respective role of IL-1α and
β in particle-induced lung inflammation. We found that
the release of endogenous IL-1α represents an early and
crucial event that determines lung inflammatory responses
to particle in mice (Figure 6). Released IL-1α after particle
exposure serves as an alarmin that triggers the expression
and the secretion of IL-1β. Alveolar macrophages repre-
sent the major source of IL-1α and IL-1β and macrophage
population can be used to develop in vitro assays useful
for screening the acute inflammatory potential of various
types of particles. Finally, our results emphasize the need
to target both IL-1α and IL-1β for regulating particle-
associated lung inflammatory diseases.

Materials and methods
Particles
Crystalline silica particles (DQ12; DMT GmbH and Co.
KG, Essen, Germany), Vitreous silica (VS; a gift from Dr.

Ghiazza, University of Torino, Italy), Aerosil 200 (Sigma-
Aldrich, Bornem, Belgium) and multi-wall carbon nano-
tubes (MWCNT; MWNT-7, Mitsui, Tokyo, Japan) powders
were sterilized by heating at 200?c for 2h immediately
before suspension. Sterile St?ber particle suspension
were synthesized based on St?ber process and its
characterization was described elsewhere [81]. Charac-
teristics of the particles are listed in Table 1.

Animal model
Female C57BL/6 mice were obtained from Janvier (Le
Genest-Saint-Isle, France). IL-1α-, IL-1β-, IL1-R1- and
MyD88-competent and -deficient mice (in C57BL/6
background) were obtained from the Transg?nose Insti-
tute (Orleans, France). Studies were performed on
gender-matched littermates aged 8-12 weeks. The ani-
mals were housed in positive pressure air-conditioned
units (25?C, 50% relative humidity) on a 12-hr light/dark
cycle and had access to standard diet and tap water ad
libitum. The experiments were conducted in accordance
with the National Research Council Guide for the Care
and Use of Laboratory Animals and approved by the in-
stitutional Ethics Committee. Suspensions of crystalline
DQ12 silica particles in sterile water or 0.9% saline
(Braun Medical, Diegem, Belgium) were injected dir-
ectly into the lung by pharyngeal aspiration at a dose of
2.5 mg/mouse inducing robust lung inflammation
[20,21]. Anti-IL-1α antibody (clone AL-161; e-Biosciences,
San Diego, USA) and anti-IL-1β antibody (clone B-122; e-
Biosciences) were injected into the peritoneal cavity at a
dose of 80 μg/mouse 1 hour before silica instillation [5].

Broncho-alveolar lavage (BAL) and alveolar cell number
Mice were sacrificed with an intraperitoneal injection of
sodium pentobarbital (20 mg/mice) and bronchoalveolar
lavage was performed by cannulating the trachea and
lavaging the lung 4? with 1ml of NaCl 0.9%. The
broncho-alveolar lavage fluid (BALF) was centrifuged at
281g, 10 min, 4?C (Centrifuge 5804R, Eppendorf,
Hamburg, Germany). Cells recovered in BAL were
counted then fixed in 1.25% paraformaldehyde and ana-
lyzed with FACS calibur (BD Biosciences) using FlowJo
software. Neutrophils were identified by labelling with
anti-GR1-PE (clone RB6-8C5, BD Biosciences, Erembode-
gem, Belgium) and their number calculated in function of
total BAL cells counted with a Burker cell chamber. Fc re-
ceptors were blocked with anti-CD16/CD32 (clone 2.4G2,
BD Biosciences) to reduce nonspecific binding.

Lung histopathology
Lungs were lavaged and perfused with 0.9% NaCl and
superior left lung lobe was fixed in 3.6% formaldehyde
solution (Sigma-Aldrich) during one night. Paraffin-
embedded 5-μm sections were stained with hematoxylin
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and eosin. Images were acquired with a slide scanner
SCN400 and analyzed with Digital Image Hub (Leica
Microsystems, Diegem, BE).

RNA extraction and quantification
Total RNA extraction and quantification by qRT-PCR
were performed as described [86]. Sequences of interest
were amplified by PCR using the following forward
primers (Invitrogen): CGG CTA CCA CAT CCA AGC
AA (mouse Rn18s ), GAC GGA CCC CAA AAG ATG
AAG (mouse Il1b ), GGA CTT CTC AAG ATC ATG
GCT ACT T (mouse Cxcr2 ), TTG AAG ACC TAA
AGA ACT GTT ACA GTG AA (mouse Il1a ), GGA
AAA GAC CAA GAG CAA GAC C (mouse Il33), TTT
TGT CCA CAT GCC CTG C (mouse Hmgb1 ), and

reverse primers: ATA CGC TAT TGG AGC TGG ATT
ACC (mouse Rn18s), CTC TTC GTT GAT GTG CTG
CTG TG (mouse Il1b ), TAG TAG AGG TGT TTG
CTG AAG ACG A (mouse Cxcr2), GCC ATA GCT
TGC ATC ATA GAA GG (mouse Il1a), TTC TTC CCA
TCC ACA CCG TC (mouse Il33), CTA ATA GTC CCA
CGG TGT GAC AGT (mouse Hmgb1).

Cell purification
Mice treated with silica (2,5 mg/mouse) or not were
sacrificed after 3 hours by intramuscular injection of 60
mg sodium pentobarbital. Lungs were perfused via the
right heart ventricle with sterile NaCl 0.9%. One ml of en-
zyme mix containing 20 mg of pronase (Sigma-Aldrich)
and 1mg of dnase (Worthington Biochemical Corporation,

Table 1 Physicochemical characterization of the particles

Name Type Crystallinity Size TEM (nm) Surface BET (m2/g)

DQ12 Ground natural mineral Crystalline 960a 7,4 -10,1b

VS Ground fused silica Amorphous 1600c 3.1c

St?ber St?ber silica Amorphous 12 d 400d

Aerosil 200 Fumed silica Amorphous 12e 175-225e

MWCNT Multi-wall carbon nanotubes N/a Length :5,700 ? 3,700 f 22f

Width : 74 ? 28 f

(a) [82].
(b) [83].
(c) [51].
(d) [84].
(e) Data provided by the manufacturer (Sigma-Aldrich).
(f) [85].

Figure 6 IL-1α released by alveolar macrophages upon particle exposure mediates neutrophilic inflammation directly and via IL-1β
production. In homeostasis, IL-1α is constitutively expressed by resident alveolar macrophages and intracellularly retained as preexisting stocks.
Released IL-1α into the extracellular milieu by necrotic macrophages serves as alarmin after silica exposure. IL-1α is a potent activating stimulus
required for surrounding macrophages to express the biologically inactive precursor IL-1β (pro-IL-1β). This form is cleaved by silica-induced
inflammasome assembly and activation prior its secretion as mature and bioactive IL-1β. IL-1α and β relayed by their receptor (IL-1R) are necessary
to generate pulmonary neutrophil accumulation in response to silica particles.
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Lakewood, USA) in HBSS (Invitrogen; Merelbeke;
Belgium) with 1% of antibiotic antimycotic (AA) (fungi-
zone (25 μg/mL), penicillin ? streptomycin (10000 U and
10000 μg/mL); Invitrogen) were infused in cannulated
trachea. After 20 minutes, lungs were excised and
placed into a tube chilled on ice with fetal bovine serum
(FBS) (Invitrogen). Collected lungs were then crushed
by repeated aspiration and expulsion in a 20 ml seringue
and passed on a 70 μM filter. Structural cells were puri-
fied based on their absence of CD45 expression by using
magnetic cell separation (MACS; Miltenyi Biotec) accord-
ing to the manufacturer's protocol; T lymphocytes based
on their CD5 expression; B lymphocytes based on their
B220 expression; dendritic cells based on their absence
of F480 and the presence of CD11c expression; and
alveolar macrophages based on their F480 expression.
Alveolar macrophages were also obtained from lung cell
suspensions grown in 75cm2 tissue culture flask in
DMEM (Invitrogen) supplemented with 10% FBS and
1% of AA, detached using trypsin (Invitrogen) and puri-
fied based on their CD45 expression by using magnetic
cell separation (MACS) according to the manufacturer's
protocol.

Pro-IL-1β and IL-1α content in lung cells
For ELISA measurement of intracellular or released pro-
IL-1β or IL-1α, fresh lung cells purified from na?ve or
silica treated mice, primary cultured macrophages, J774,
MLg or LA4 (106 cells/well in 96-well plate) were ex-
posed overnight with LPS (0,1μg/ml; Enzo Life Sciences,
Antwerpen, Belgium), DQ12, mouse recombinant IL-1α,
IL-33, IL-1β, TNF-α (R&D systems, Minneapolis, USA)
or HMGB1 (chemokine, non-oxydable and cytokine
form; HMGBiotech, Milano, Italia) when necessary. For
intracellular cytokine measurement, cell pellets were lysed
by addition of 100 μl of triton X-100 0,1%. The ex vivo re-
leased of IL-1α were quantified by ELISA in the superna-
tants of cells purified from silica-treated lungs maintained
in culture during 24 hours in 100 μl of DMEM. For
in vitro IL-1α release in response to particles, fresh alveo-
lar F4/80+ macrophages (106 cells/well in 96-well plate) or
J774 cells (0.4 106 cells/well in 96-well plate) were incu-
bated overnight with particles dispersed in 100 μl of
DMEM and IL-1α was measured in the supernatant.
For western blot analysis, cells were lysed on ice in

200 μl Triton lysis buffer (TLB) (1% Triton, 25mM Tris
pH 7.4, 150mM NaCl + anti-protease tablets from Roche
Applied Science at 2 mg/ml). Protocol for Western blot
is described elsewhere [84].

Enzyme-linked immunosorbent assays (ELISA)
ELISA kits were used to measure IL-1β, IL-1α, IL-33
(DY401, R&D Systems, Wiesbaden-Nordenstadt, Germany),
HMGB1 (Cedarlane Laboratories USA Inc., Burlington,

USA) and pro-IL-1β (e-Biosciences). Assays were run ac-
cording to the manufacturer's protocols with a detection
limit of 5 pg/ml for IL-1β, IL-1α, IL-33, 0,2 ng/ml for
HMGB1 and 25 pg/ml for pro-IL-1β

Statistics
Results were analyzed by t-test. Statistical significance
was considered at P < 0.05.

Additional file

Additional file 1: Figure S1. Levels of (a) HMGB1, (b) IL-1β and proteins
(c) in BAL fluid collected at different time points after silica (crystalline
DQ12, 2.5 mg) or not (control). Pulmonary expression of (d) pro-IL-1α, (e)
pro-IL-33 and (f) HMGB1 quantified by qRT-PCR at different time points
after instillation of silica or not. Values are means ? SEM of 3 to 8 animals.
*p <0.05, **p < 0.01 and ***p < 0.001 denote significant difference between
animals treated with silica or not; ns, denotes no significant difference. P-
values are estimated by t-test. Figure S2. (a) Intracellular levels of pro-IL-1β in
primary cultured alveolar macrophages exposed overnight to LPS (0.1 μg/ml)
or recombinant TNF-α. n = 3 to 5. (b) Western blot analysis of intracellular
pro-IL-1β and β-actin in primary cultured lung macrophages exposed during
18 hours to LPS (0.1 μg/ml) or recombinant TNF-α. Values are means ? SEM.
**p < 0.01 and ***p < 0.001 denotes significant difference between cells
in DMEM and cells exposed to LPS or recombinant TNF-α. P-values are
estimated by t-test.
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