156 research outputs found

    Lobar pneumonia caused by Ralstonia pickettii in a sixty-five-year-old Han Chinese man: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p><it>Ralstonia pickettii </it>is a gram-negative, oxidase-positive bacillus and is an emerging pathogen found in infections described in hospital settings. The cases reported in the literature mostly are nosocomial infections due to contaminated blood products, sterile water, saline, treatment fluids and venous catheters. Human infection unrelated to contaminated solutions is rare. We report a case of lobar pneumonia and pulmonary abscess caused by <it>Ralstonia pickettii </it>in an older patient.</p> <p>Case presentation</p> <p>A sixty-five-year old Han Chinese man presented having had cough, expectoration, chest pain and fever lasting for twenty days. His medical history was notable for hypertension over the previous ten years, and the habit of smoking for forty years. A thoracic computed tomography scan supported the diagnosis of right-sided lobar pneumonia. A lung biopsy was done and pathological analysis confirmed lobar pneumonia. Two lung biopsy specimens from separate sites grew <it>Ralstonia pickettii</it>. After six days, a repeat thoracic scan revealed a right-sided abscess. A thoracentesis was performed and the purulent fluid grew <it>Ralstonia pickettii</it>. The chest tube remained inserted to rinse the cavity with sterile sodium chloride. He received an antibiotic course of intravenous cefoperazone sodium-sulbactam sodium for eighteen days and imipenem-cilastatin for twelve days. A repeat chest X-ray revealed resolution of the pulmonary abscess and improvement of pneumonia. He remained afebrile and free of respiratory symptoms after treatments.</p> <p>Conclusion</p> <p>This case demonstrates a <it>Ralstonia pickettii </it>infection in the absence of an obvious nosocomial source. It is possible that such cases will become common in the future. Therefore, further studies are needed to evaluate its sensitivity to common antibiotics.</p

    Who Needs Microtubules? Myogenic Reorganization of MTOC, Golgi Complex and ER Exit Sites Persists Despite Lack of Normal Microtubule Tracks

    Get PDF
    A wave of structural reorganization involving centrosomes, microtubules, Golgi complex and ER exit sites takes place early during skeletal muscle differentiation and completely remodels the secretory pathway. The mechanism of these changes and their functional implications are still poorly understood, in large part because all changes occur seemingly simultaneously. In an effort to uncouple the reorganizations, we have used taxol, nocodazole, and the specific GSK3-β inhibitor DW12, to disrupt the dynamic microtubule network of differentiating cultures of the mouse skeletal muscle cell line C2. Despite strong effects on microtubules, cell shape and cell fusion, none of the treatments prevented early differentiation. Redistribution of centrosomal proteins, conditional on differentiation, was in fact increased by taxol and nocodazole and normal in DW12. Redistributions of Golgi complex and ER exit sites were incomplete but remained tightly linked under all circumstances, and conditional on centrosomal reorganization. We were therefore able to uncouple microtubule reorganization from the other events and to determine that centrosomal proteins lead the reorganization hierarchy. In addition, we have gained new insight into structural and functional aspects of the reorganization of microtubule nucleation during myogenesis

    VKORC1 Common Variation and Bone Mineral Density in the Third National Health and Nutrition Examination Survey

    Get PDF
    Osteoporosis, defined by low bone mineral density (BMD), is common among postmenopausal women. The distribution of BMD varies across populations and is shaped by both environmental and genetic factors. Because the candidate gene vitamin K epoxide reductase complex subunit 1 (VKORC1) generates vitamin K quinone, a cofactor for the gamma-carboxylation of bone-related proteins such as osteocalcin, we hypothesized that VKORC1 genetic variants may be associated with BMD and osteoporosis in the general population. To test this hypothesis, we genotyped six VKORC1 SNPs in 7,159 individuals from the Third National Health and Nutrition Examination Survey (NHANES III). NHANES III is a nationally representative sample linked to health and lifestyle variables including BMD, which was measured using dual energy x-ray absorptiometry (DEXA) on four regions of the proximal femur. In adjusted models stratified by race/ethnicity and sex, SNPs rs9923231 and rs9934438 were associated with increased BMD (p = 0.039 and 0.024, respectively) while rs8050894 was associated with decreased BMD (p = 0.016) among non-Hispanic black males (n = 619). VKORC1 rs2884737 was associated with decreased BMD among Mexican-American males (n = 795; p = 0.004). We then tested for associations between VKORC1 SNPs and osteoporosis, but the results did not mirror the associations observed between VKORC1 and BMD, possibly due to small numbers of cases. This is the first report of VKORC1 common genetic variation associated with BMD, and one of the few reports available that investigate the genetics of BMD and osteoporosis in diverse populations

    The accuracy of pulse oximetry in emergency department patients with severe sepsis and septic shock: a retrospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pulse oximetry is routinely used to continuously and noninvasively monitor arterial oxygen saturation (SaO<sub>2</sub>) in critically ill patients. Although pulse oximeter oxygen saturation (SpO<sub>2</sub>) has been studied in several patient populations, including the critically ill, its accuracy has never been studied in emergency department (ED) patients with severe sepsis and septic shock. Sepsis results in characteristic microcirculatory derangements that could theoretically affect pulse oximeter accuracy. The purposes of the present study were twofold: 1) to determine the accuracy of pulse oximetry relative to SaO2 obtained from ABG in ED patients with severe sepsis and septic shock, and 2) to assess the impact of specific physiologic factors on this accuracy.</p> <p>Methods</p> <p>This analysis consisted of a retrospective cohort of 88 consecutive ED patients with severe sepsis who had a simultaneous arterial blood gas and an SpO<sub>2 </sub>value recorded. Adult ICU patients that were admitted from any Calgary Health Region adult ED with a pre-specified, sepsis-related admission diagnosis between October 1, 2005 and September 30, 2006, were identified. Accuracy (SpO<sub>2 </sub>- SaO<sub>2</sub>) was analyzed by the method of Bland and Altman. The effects of hypoxemia, acidosis, hyperlactatemia, anemia, and the use of vasoactive drugs on bias were determined.</p> <p>Results</p> <p>The cohort consisted of 88 subjects, with a mean age of 57 years (19 - 89). The mean difference (SpO<sub>2 </sub>- SaO<sub>2</sub>) was 2.75% and the standard deviation of the differences was 3.1%. Subgroup analysis demonstrated that hypoxemia (SaO<sub>2 </sub>< 90) significantly affected pulse oximeter accuracy. The mean difference was 4.9% in hypoxemic patients and 1.89% in non-hypoxemic patients (p < 0.004). In 50% (11/22) of cases in which SpO<sub>2 </sub>was in the 90-93% range the SaO2 was <90%. Though pulse oximeter accuracy was not affected by acidoisis, hyperlactatementa, anemia or vasoactive drugs, these factors worsened precision.</p> <p>Conclusions</p> <p>Pulse oximetry overestimates ABG-determined SaO<sub>2 </sub>by a mean of 2.75% in emergency department patients with severe sepsis and septic shock. This overestimation is exacerbated by the presence of hypoxemia. When SaO<sub>2 </sub>needs to be determined with a high degree of accuracy arterial blood gases are recommended.</p

    The Abdominal Circulatory Pump

    Get PDF
    Blood in the splanchnic vasculature can be transferred to the extremities. We quantified such blood shifts in normal subjects by measuring trunk volume by optoelectronic plethysmography, simultaneously with changes in body volume by whole body plethysmography during contractions of the diaphragm and abdominal muscles. Trunk volume changes with blood shifts, but body volume does not so that the blood volume shifted between trunk and extremities (Vbs) is the difference between changes in trunk and body volume. This is so because both trunk and body volume change identically with breathing and gas expansion or compression. During tidal breathing Vbs was 50–75 ml with an ejection fraction of 4–6% and an output of 750–1500 ml/min. Step increases in abdominal pressure resulted in rapid emptying presumably from the liver with a time constant of 0.61±0.1SE sec. followed by slower flow from non-hepatic viscera. The filling time constant was 0.57±0.09SE sec. Splanchnic emptying shifted up to 650 ml blood. With emptying, the increased hepatic vein flow increases the blood pressure at its entry into the inferior vena cava (IVC) and abolishes the pressure gradient producing flow between the femoral vein and the IVC inducing blood pooling in the legs. The findings are important for exercise because the larger the Vbs the greater the perfusion of locomotor muscles. During asystolic cardiac arrest we calculate that appropriate timing of abdominal compression could produce an output of 6 L/min. so that the abdominal circulatory pump might act as an auxiliary heart

    Wdr74 Is Required for Blastocyst Formation in the Mouse

    Get PDF
    Preimplantation is a dynamic developmental period during which a combination of maternal and zygotic factors program the early embryo resulting in lineage specification and implantation. A reverse genetic RNAi screen in mouse embryos identified the WD Repeat Domain 74 gene (Wdr74) as being required for these critical first steps of mammalian development. Knockdown of Wdr74 results in embryos that develop normally until the morula stage but fail to form blastocysts or properly specify the inner cell mass and trophectoderm. In Wdr74-deficient embryos, we find activated Trp53-dependent apoptosis as well as a global reduction of RNA polymerase I, II and III transcripts. In Wdr74-deficient embryos blocking Trp53 function rescues blastocyst formation and lineage differentiation. These results indicate that Wdr74 is required for RNA transcription, processing and/or stability during preimplantation development and is an essential gene in the mouse

    The -1997 G/T and Sp1 Polymorphisms in the Collagen Type I alpha1 (COLIA1) Gene in Relation to Changes in Femoral Neck Bone Mineral Density and the Risk of Fracture in the Elderly: The Rotterdam Study

    Get PDF
    The COLIA1 Sp1 polymorphism has been associated with bone mineral density (BMD) and fracture. A promoter polymorphism, -1997 G/T, also has been associated with BMD. In this study, we examined whether these polymorphisms alone and in the form of haplotypes influence bone parameters and fracture risk in a large population-based cohort of elderly Caucasians. We determined the COLIA1 -1997 G/T (promoter) and Sp1 G/T (intron) polymorphisms in 6,280 individuals and inferred haplotypes. Femoral neck BMD and BMD change were compared across COLIA1 genotypes at baseline and follow-up (mean 6.5 years). We also investigated the relationship between the COLIA1 polymorphisms and incident nonvertebral fractures, which were recorded during a mean follow-up period of 7.4 years. Vertebral fractures were assessed by radiographs on 3,456 genotyped individuals. Femoral neck BMD measured at baseline was 3.8% lower in women carrying two copies of the T-Sp1 allele (P for trend = 0.03). No genotype dependent differences in BMD loss were observed. In women homozygous for the T allele of the Sp1 polymorphism, the risk of fragility fracture increased 2.3 times (95% confidence interval 1.4–3.9, P = 0.001). No such association was observed with the promoter polymorphism. In men, no association with either the Sp1 or the -1997 G/T promoter polymorphism was seen with BMD or fracture. High linkage disequilibrium (LD; D′ = 0.99, r2 = 0.03) exists between the two studied polymorphisms. We observed three haplotypes in our population: haplotype 1 (Gpromoter–Gintron) frequency (f) = 69%, haplotype 2 (Gpromoter–Tintron) f = 17.6%, and haplotype 3 (Tpromoter–Gintron) f = 13.4%. Haplotype 2 was associated with a 2.1-fold increased risk of fragility fracture in women (95% confidence interval 1.2–3.7, P = 0.001). We confirm that the COLIA1 Sp1 polymorphism influences BMD and the risk of fracture in postmenopausal Caucasian women. In contrast, we found no independent effect of the -1997 G/T promoter polymorphism on BMD or fracture

    Increased Expression of Toll-Like Receptors by Monocytes and Natural Killer Cells in ANCA-Associated Vasculitis

    Get PDF
    INTRODUCTION: Toll-like receptors (TLRs) are a family of receptors that sense pathogen associated patterns such as bacterial cell wall proteins. Bacterial infections are associated with anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV). Here, we assessed the expression of TLRs 2, 4, and 9 by peripheral blood leukocytes from patients with AAV, and investigated TLR mediated responses ex vivo. METHODS: Expression of TLRs was determined in 38 AAV patients (32 remission, 6 active disease), and 20 healthy controls (HC). Membrane expression of TLRs 2, 4, and 9, and intracellular expression of TLR9 by B lymphocytes, T lymphocytes, NK cells, monocytes and granulocytes was assessed using 9-color flowcytometry. Whole blood from 13 patients and 7 HC was stimulated ex vivo with TLR 2, 4 and 9 ligands and production of cytokines was analyzed. RESULTS: In patients, we observed increased proportions of TLR expressing NK cells. Furthermore, patient monocytes expressed higher levels of TLR2 compared to HC, and in a subset of patients an increased proportion of TLR4(+) monocytes was observed. Monocytes from nasal carriers of Staphylococcus aureus expressed increased levels of intracellular TLR9. Membrane expression of TLRs by B lymphocytes, T lymphocytes, and granulocytes was comparable between AAV patients and HC. Patients with active disease did not show differential TLR expression compared to patients in remission. Ex vivo responses to TLR ligands did not differ significantly between patients and HC. CONCLUSIONS: In AAV, monocytes and NK cells display increased TLR expression. Increased TLR expression by these leukocytes, probably resulting from increased activation, could play a role in disease (re)activation

    A mRNA landscape of bovine embryos after standard and MAPK-inhibited culture conditions: a comparative analysis.

    Get PDF
    BACKGROUND: Genes and signalling pathways involved in pluripotency have been studied extensively in mouse and human pre-implantation embryos and embryonic stem (ES) cells. The unsuccessful attempts to generate ES cell lines from other species including cattle suggests that other genes and pathways are involved in maintaining pluripotency in these species. To investigate which genes are involved in bovine pluripotency, expression profiles were generated from morula, blastocyst, trophectoderm and inner cell mass (ICM) samples using microarray analysis. As MAPK inhibition can increase the NANOG/GATA6 ratio in the inner cell mass, additionally blastocysts were cultured in the presence of a MAPK inhibitor and changes in gene expression in the inner cell mass were analysed. RESULTS: Between morula and blastocyst 3,774 genes were differentially expressed and the largest differences were found in blastocyst up-regulated genes. Gene ontology (GO) analysis shows lipid metabolic process as the term most enriched with genes expressed at higher levels in blastocysts. Genes with higher expression levels in morulae were enriched in the RNA processing GO term. Of the 497 differentially expressed genes comparing ICM and TE, the expression of NANOG, SOX2 and POU5F1 was increased in the ICM confirming their evolutionary preserved role in pluripotency. Several genes implicated to be involved in differentiation or fate determination were also expressed at higher levels in the ICM. Genes expressed at higher levels in the ICM were enriched in the RNA splicing and regulation of gene expression GO term. Although NANOG expression was elevated upon MAPK inhibition, SOX2 and POU5F1 expression showed little increase. Expression of other genes in the MAPK pathway including DUSP4 and SPRY4, or influenced by MAPK inhibition such as IFNT, was down-regulated. CONCLUSION: The data obtained from the microarray studies provide further insight in gene expression during bovine embryonic development. They show an expression profile in pluripotent cells that indicates a pluripotent, epiblast-like state. The inability to culture ICM cells as stem cells in the presence of an inhibitor of MAPK activity together with the reported data indicates that MAPK inhibition alone is not sufficient to maintain a pluripotent character in bovine cells
    corecore