4,494 research outputs found

    Flight of the dragonflies and damselflies

    Get PDF
    This work is a synthesis of our current understanding of the mechanics, aerodynamics and visually mediated control of dragonfly and damselfly flight, with the addition of new experimental and computational data in several key areas. These are: the diversity of dragonfly wing morphologies, the aerodynamics of gliding flight, force generation in flapping flight, aerodynamic efficiency, comparative flight performance and pursuit strategies during predatory and territorial flights. New data are set in context by brief reviews covering anatomy at several scales, insect aerodynamics, neuromechanics and behaviour. We achieve a new perspective by means of a diverse range of techniques, including laser-line mapping of wing topographies, computational fluid dynamics simulations of finely detailed wing geometries, quantitative imaging using particle image velocimetry of on-wing and wake flow patterns, classical aerodynamic theory, photography in the field, infrared motion capture and multi-camera optical tracking of free flight trajectories in laboratory environments. Our comprehensive approach enables a novel synthesis of datasets and subfields that integrates many aspects of flight from the neurobiology of the compound eye, through the aeromechanical interface with the surrounding fluid, to flight performance under cruising and higher-energy behavioural modes

    Uncovering the overlapping community structure of complex networks in nature and society

    Full text link
    Many complex systems in nature and society can be described in terms of networks capturing the intricate web of connections among the units they are made of. A key question is how to interpret the global organization of such networks as the coexistence of their structural subunits (communities) associated with more highly interconnected parts. Identifying these a priori unknown building blocks (such as functionally related proteins, industrial sectors and groups of people) is crucial to the understanding of the structural and functional properties of networks. The existing deterministic methods used for large networks find separated communities, whereas most of the actual networks are made of highly overlapping cohesive groups of nodes. Here we introduce an approach to analysing the main statistical features of the interwoven sets of overlapping communities that makes a step towards uncovering the modular structure of complex systems. After defining a set of new characteristic quantities for the statistics of communities, we apply an efficient technique for exploring overlapping communities on a large scale. We find that overlaps are significant, and the distributions we introduce reveal universal features of networks. Our studies of collaboration, word-association and protein interaction graphs show that the web of communities has non-trivial correlations and specific scaling properties.Comment: The free academic research software, CFinder, used for the publication is available at the website of the publication: http://angel.elte.hu/clusterin

    Hydrophilic and lipophilic radiopharmaceuticals as tracers in pharmaceutical development: In vitro – In vivo studies

    Get PDF
    BACKGROUND: Scintigraphic studies have been performed to assess the release, both in vitro and in vivo, of radiotracers from tablet formulations. Four different tracers with differing physicochemical characteristics have been evaluated to assess their suitability as models for drug delivery. METHODS: In-vitro disintegration and dissolution studies have been performed at pH 1, 4 and 7. In-vivo studies have been performed by scintigraphic imaging in healthy volunteers. Two hydrophilic tracers, ((99m)Tc-DTPA) and ((99m)Tc-MDP), and two lipophilic tracers, ((99m)Tc-ECD) and ((99m)Tc-MIBI), were used as drug models. RESULTS: Dissolution and disintegration profiles, differed depending on the drug model chosen. In vitro dissolution velocity constants indicated a probable retention of the radiotracer in the formulation. In vivo disintegration velocity constants showed important variability for each radiopharmaceutical. Pearson statistical test showed no correlation between in vitro drug release, and in vivo behaviour, for (99m)Tc-DTPA, (99m)Tc-ECD and (99m)Tc-MIBI. High correlation coefficients were found for (99m)Tc-MDP not only for in vitro dissolution and disintegration studies but also for in vivo scintigraphic studies. CONCLUSION: Scintigraphic studies have made a significant contribution to the development of drug delivery systems. It is essential, however, to choose the appropriate radiotracers as models of drug behaviour. This study has demonstrated significant differences in release patterns, depending on the model chosen. It is likely that each formulation would require the development of a specific model, rather than being able to use a generic drug model on the basis of its physicochemical characteristics

    Network segregation in a model of misinformation and fact checking

    Get PDF
    Misinformation under the form of rumor, hoaxes, and conspiracy theories spreads on social media at alarming rates. One hypothesis is that, since social media are shaped by homophily, belief in misinformation may be more likely to thrive on those social circles that are segregated from the rest of the network. One possible antidote is fact checking which, in some cases, is known to stop rumors from spreading further. However, fact checking may also backfire and reinforce the belief in a hoax. Here we take into account the combination of network segregation, finite memory and attention, and fact-checking efforts. We consider a compartmental model of two interacting epidemic processes over a network that is segregated between gullible and skeptic users. Extensive simulation and mean-field analysis show that a more segregated network facilitates the spread of a hoax only at low forgetting rates, but has no effect when agents forget at faster rates. This finding may inform the development of mitigation techniques and overall inform on the risks of uncontrolled misinformation online

    Assessment of a novel, capsid-modified adenovirus with an improved vascular gene transfer profile

    Get PDF
    <p>Background: Cardiovascular disorders, including coronary artery bypass graft failure and in-stent restenosis remain significant opportunities for the advancement of novel therapeutics that target neointimal hyperplasia, a characteristic of both pathologies. Gene therapy may provide a successful approach to improve the clinical outcome of these conditions, but would benefit from the development of more efficient vectors for vascular gene delivery. The aim of this study was to assess whether a novel genetically engineered Adenovirus could be utilised to produce enhanced levels of vascular gene expression.</p> <p>Methods: Vascular transduction capacity was assessed in primary human saphenous vein smooth muscle and endothelial cells using vectors expressing the LacZ reporter gene. The therapeutic capacity of the vectors was compared by measuring smooth muscle cell metabolic activity and migration following infection with vectors that over-express the candidate therapeutic gene tissue inhibitor of matrix metalloproteinase-3 (TIMP-3).</p> <p>Results: Compared to Adenovirus serotype 5 (Ad5), the novel vector Ad5T*F35++ demonstrated improved binding and transduction of human vascular cells. Ad5T*F35++ mediated expression of TIMP-3 reduced smooth muscle cell metabolic activity and migration in vitro. We also demonstrated that in human serum samples pre-existing neutralising antibodies to Ad5T*F35++ were less prevalent than Ad5 neutralising antibodies.</p> <p>Conclusions: We have developed a novel vector with improved vascular transduction and improved resistance to human serum neutralisation. This may provide a novel vector platform for human vascular gene transfer.</p&gt

    Network Physiology reveals relations between network topology and physiological function

    Full text link
    The human organism is an integrated network where complex physiologic systems, each with its own regulatory mechanisms, continuously interact, and where failure of one system can trigger a breakdown of the entire network. Identifying and quantifying dynamical networks of diverse systems with different types of interactions is a challenge. Here, we develop a framework to probe interactions among diverse systems, and we identify a physiologic network. We find that each physiologic state is characterized by a specific network structure, demonstrating a robust interplay between network topology and function. Across physiologic states the network undergoes topological transitions associated with fast reorganization of physiologic interactions on time scales of a few minutes, indicating high network flexibility in response to perturbations. The proposed system-wide integrative approach may facilitate the development of a new field, Network Physiology.Comment: 12 pages, 9 figure

    Enrichment of antioxidant capacity and vitamin E in pita made from barley

    Get PDF
    This study aimed to enhance total antioxidant and vitamin E content of pita bread, by replacing 50% of the standard baker's flour with flours milled from covered (WI2585 and Harrington) or hulless (Finniss) barley genotypes, previously shown to have high antioxidant and vitamin E levels at harvest. Pita breads were made from either 100% baker's flour (control) or 50% malt flour, whole-grain flour, or flour from barley grains pearled at 10%, 15%, and 20% grain weight. Antioxidant capacity and vitamin E content of flours and pitas were determined by their ability to scavenge 2,2-diphenyl-1-picrylhydrazyl radicals and high performance liquid chromatography, respectively. The physical and sensory properties of the pitas were also assessed. All pitas made from either whole grain or pearled barley flour had a higher antioxidant capacity and most also had higher vitamin E content than standard pita. The antioxidant and vitamin E levels were reduced in pearled compared to whole grains, however the extent of that reduction varied among genotypes. The greatest antioxidant and vitamin E levels were found in pita made from malt flour or Finniss whole grain flour. Furthermore, sensory analysis suggested these pitas were acceptable to consumers and retained similar physical and sensory properties to those in the control pita.Thi Thu Dung Do, Beverly Muhlhausler, Amanda Box and Amanda J. Abl

    The emerging structure of the Extended Evolutionary Synthesis: where does Evo-Devo fit in?

    Get PDF
    The Extended Evolutionary Synthesis (EES) debate is gaining ground in contemporary evolutionary biology. In parallel, a number of philosophical standpoints have emerged in an attempt to clarify what exactly is represented by the EES. For Massimo Pigliucci, we are in the wake of the newest instantiation of a persisting Kuhnian paradigm; in contrast, Telmo Pievani has contended that the transition to an EES could be best represented as a progressive reformation of a prior Lakatosian scientific research program, with the extension of its Neo-Darwinian core and the addition of a brand-new protective belt of assumptions and auxiliary hypotheses. Here, we argue that those philosophical vantage points are not the only ways to interpret what current proposals to ‘extend’ the Modern Synthesis-derived ‘standard evolutionary theory’ (SET) entail in terms of theoretical change in evolutionary biology. We specifically propose the image of the emergent EES as a vast network of models and interweaved representations that, instantiated in diverse practices, are connected and related in multiple ways. Under that assumption, the EES could be articulated around a paraconsistent network of evolutionary theories (including some elements of the SET), as well as models, practices and representation systems of contemporary evolutionary biology, with edges and nodes that change their position and centrality as a consequence of the co-construction and stabilization of facts and historical discussions revolving around the epistemic goals of this area of the life sciences. We then critically examine the purported structure of the EES—published by Laland and collaborators in 2015—in light of our own network-based proposal. Finally, we consider which epistemic units of Evo-Devo are present or still missing from the EES, in preparation for further analyses of the topic of explanatory integration in this conceptual framework

    Revisiting Date and Party Hubs: Novel Approaches to Role Assignment in Protein Interaction Networks

    Get PDF
    The idea of 'date' and 'party' hubs has been influential in the study of protein-protein interaction networks. Date hubs display low co-expression with their partners, whilst party hubs have high co-expression. It was proposed that party hubs are local coordinators whereas date hubs are global connectors. Here we show that the reported importance of date hubs to network connectivity can in fact be attributed to a tiny subset of them. Crucially, these few, extremely central, hubs do not display particularly low expression correlation, undermining the idea of a link between this quantity and hub function. The date/party distinction was originally motivated by an approximately bimodal distribution of hub co-expression; we show that this feature is not always robust to methodological changes. Additionally, topological properties of hubs do not in general correlate with co-expression. Thus, we suggest that a date/party dichotomy is not meaningful and it might be more useful to conceive of roles for protein-protein interactions rather than individual proteins. We find significant correlations between interaction centrality and the functional similarity of the interacting proteins.Comment: 27 pages, 5 main figures, 4 supplementary figure

    Surgical management of a diabetic calcaneal ulceration and osteomyelitis with a partial calcanectomy and a sural neurofasciocutaneous flap

    Get PDF
    The treatment of calcaneal osteomyelitis in diabetic patients poses a great challenge to the treating physician and surgeon. The use of a distally based sural neurofasciocutaneous flap after an aggressive debridement of non-viable and poorly vascularized tissue and bone that is combined with a thorough antibiotic regimen provides a great technique for adequate soft tissue coverage of the heel. In this case report, the authors describe the aforementioned flap as a versatile alternative to the use of local or distant muscle flaps for diabetic patients with calcaneal osteomyelitis and concomitant large wounds
    corecore