24 research outputs found

    Influence of copolymer interface orientation on the optical emission of polymeric semiconductor heterojunctions.

    No full text
    We have examined the Coulombic interactions at the interface in a blend of two copolymers with intramolecular charge-transfer character and optimized band offsets for photoinduced charge generation. The combination of both time-resolved measurements of photoluminescence, and quantum-chemical modeling of the heterojunction allows us to show that relative orientation across the heterojunction can lead to either a repulsive barrier ( approximately 65 meV) or an attractive interaction which can enhance the charge-transfer processes. We conclude that polymer orientation at the heterojunction can be as important as energy-band offsets in determining the dynamics of charge separation and optical emission

    Chemical zoning of muscovite megacrystal from the Brazilian Pegmatite Province

    No full text
    Macroscopically homogenous muscovite plate from the Cruzeiro pegmatite, located in the Eastern Pegmatite Province in Minas Gerais, may show complex distribution patterns of some trace elements. In geochronological and petrological studies, as for example in the distinction of magmatic and post-magmatic mica, the cause of zoning could be taken into consideration. The complex chemical zoning in the studied mica plate can be best explained by growth in an evolving magma followed by alteration due to percolation of hydrothermal fluids. Enrichment of Rb towards the border is interpreted as resulting from the chemical evolution of the residual magma during crystal growth. The depletion in (IV Al+VI Al) as well as the increase in (Fe+Mg) and Si along a fracture could be due to the hydrothermal celadonitic substitution of muscovite. This alteration also caused depletion in the contents of Rb, Ga, Y, Nb, Sn, and Zn and residual concentration of Ti. Elements such as Ga, Y, Nb, Sn, and Zn, rarely considered in the discussion of differentiation or alteration processes in micas, have been shown to be as significant as the alkali-elements.<br>Um grande cristal de muscovita, macroscopicamente homogêneo, procedente do Pegmatito Cruzeiro, localizado na Província Pegmatítica Oriental, em Minas Gerais, exibe padrão de distribuição complexa para alguns elementos traços. Em estudos geocronológicos e petrológicos, como, por exemplo, na separação entre micas magmáticas e pós-magmáticas, a causa de zoneamento deve ser levada em consideração. O complexo zoneamento químico no cristal de mica estudado é melhor explicado pelo crescimento em um magma evoluído, seguido pela alteração, proveniente da percolação de fluidos hidrotermais. O enriquecimento de Rb nas bordas é interpretado como resultado da evolução química do magma residual durante o crescimento do cristal. A diminuição em (IV Al+VI Al), bem como o aumento de (Fe+Mg) e Si ao longo da fratura é explicado pela substituição hidrotermal celadonítica da muscovita. A alteração hidrotermal causou, também, a diminuição nos conteúdos de Rb, Ga, Y, Nb, Sn e Zn ao longo desta fratura, além da concentração residual de Ti. Elementos tais como, Ga, Y, Nb, Sn, e Zn, pouco considerados em discussão de diferenciação ou processos de alteração, mostraram significância tanto quanto os elementos alcalinos

    Multicomponent semiconducting polymer systems with low crystallization-induced percolation threshold

    No full text
    Blends and other multicomponent systems are used in various polymer applications to meet multiple requirements that cannot be fulfilled by a single material. In polymer optoelectronic devices it is often desirable to combine the semiconducting properties of the conjugated species with the excellent mechanical properties of certain commodity polymers. Here we investigate bicomponent blends comprising semicrystalline regioregular poly(3-hexylthiophene) and selected semicrystalline commodity polymers, and show that, owing to a highly favourable, crystallization-induced phase segregation of the two components, during which the semiconductor is predominantly expelled to the surfaces of cast films, we can obtain vertically stratified structures in a one-step process. Incorporating these as active layers in polymer field-effect transistors, we find that the concentration of the semiconductor can be reduced to values as low as 3 wt% without any degradation in device performance. This is in stark contrast to blends containing an amorphous insulating polymer, for which significant reduction in electrical performance was reported. Crystalline-crystalline/semiconducting-insulating multicomponent systems offer expanded flexibility for realizing high-performance semiconducting architectures at drastically reduced materials cost with improved mechanical properties and environmental stability, without the need to design all performance requirements into the active semiconducting polymer itself
    corecore