22 research outputs found

    Comparison of infant malaria incidence in districts of Maputo province, Mozambique

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria is one of the principal health problems in Mozambique, representing 48% of total external consultations and 63% of paediatric hospital admissions in rural and general hospitals with 26.7% of total mortality. <it>Plasmodium falciparum </it>is responsible for 90% of all infections being also the species associated with most severe cases. The aim of this study was to identify zones of high malaria risk, showing their spatially and temporal pattern.</p> <p>Methods</p> <p>Space and time Poison model for the analysis of malaria data is proposed. This model allows for the inclusion of environmental factors: rainfall, temperature and humidity as predictor variables. Modelling and inference use the fully Bayesian approach via Markov Chain Monte Carlo (MCMC) simulation techniques. The methodology is applied to analyse paediatric data arising from districts of Maputo province, Mozambique, between 2007 and 2008.</p> <p>Results</p> <p>Malaria incidence risk is greater for children in districts of Manhiça, Matola and Magude. Rainfall and humidity are significant predictors of malaria incidence. The risk increased with rainfall (relative risk - RR: .006761, 95% interval: .001874, .01304), and humidity (RR: .049, 95% interval: .03048, .06531). Malaria incidence was found to be independent of temperature.</p> <p>Conclusions</p> <p>The model revealed a spatial and temporal pattern of malaria incidence. These patterns were found to exhibit a stable malaria transmission in most non-coastal districts. The findings may be useful for malaria control, planning and management.</p

    Nigeria Anopheles vector database: an overview of 100 years' research.

    Get PDF
    Anopheles mosquitoes are important vectors of malaria and lymphatic filariasis (LF), which are major public health diseases in Nigeria. Malaria is caused by infection with a protozoan parasite of the genus Plasmodium and LF by the parasitic worm Wuchereria bancrofti. Updating our knowledge of the Anopheles species is vital in planning and implementing evidence based vector control programs. To present a comprehensive report on the spatial distribution and composition of these vectors, all published data available were collated into a database. Details recorded for each source were the locality, latitude/longitude, time/period of study, species, abundance, sampling/collection methods, morphological and molecular species identification methods, insecticide resistance status, including evidence of the kdr allele, and P. falciparum sporozoite rate and W. bancrofti microfilaria prevalence. This collation resulted in a total of 110 publications, encompassing 484,747 Anopheles mosquitoes in 632 spatially unique descriptions at 142 georeferenced locations being identified across Nigeria from 1900 to 2010. Overall, the highest number of vector species reported included An. gambiae complex (65.2%), An. funestus complex (17.3%), An. gambiae s.s. (6.5%). An. arabiensis (5.0%) and An. funestus s.s. (2.5%), with the molecular forms An. gambiae M and S identified at 120 locations. A variety of sampling/collection and species identification methods were used with an increase in molecular techniques in recent decades. Insecticide resistance to pyrethroids and organochlorines was found in the main Anopheles species across 45 locations. Presence of P. falciparum and W. bancrofti varied between species with the highest sporozoite rates found in An. gambiae s.s, An. funestus s.s. and An. moucheti, and the highest microfilaria prevalence in An. gambiae s.l., An. arabiensis, and An. gambiae s.s. This comprehensive geo-referenced database provides an essential baseline on Anopheles vectors and will be an important resource for malaria and LF vector control programmes in Nigeria

    Repeated mass distributions and continuous distribution of long-lasting insecticidal nets : modelling sustainability of health benefits from mosquito nets, depending on case management

    Get PDF
    Stagnating funds for malaria control have spurred interest in the question of how to sustain the gains of recent successes with long-lasting insecticidal nets (LLINs) and improved case management (CM). This simulation study examined the malaria transmission and disease dynamics in scenarios with sustained LLINs and CM interventions and tried to determine optimal LLIN distribution rates. The effects of abruptly halting LLIN distribution were also examined.; Dynamic simulations of malaria in humans and mosquitoes were run on the OpenMalaria platform, using stochastic individual-based simulation models. LLINs were distributed in a range of transmission settings, with varying CM coverage levels.; In the short-term, LLINs were beneficial over the entire transmission spectrum, reducing both transmission and disease burden. In the long-term, repeated distributions sustainably reduced transmission in all settings. However, because of the resulting reduction in acquired immunity in the population, the malaria disease burden, after initially being reduced, gradually increased and eventually stabilized at a new level. This new level was higher than the pre-intervention level in previously high transmission settings, if there is a maximum disease burden in the relationship between transmission and disease burden at intermediate transmission levels. This result could lead one to conclude that sustained LLIN distribution might not be cost-effective in high transmission settings in the long term. However, improved CM rendered LLINs more cost-effective in higher transmission settings than in those without improved CM and the majority of the African population lives in areas where CM and LLINs are sustainably combined. The effects of changes in LLIN distribution rate on cost-effectiveness were relatively small compared to the effects of changes in transmission setting and CM. Abruptly halting LLIN distribution led to temporary morbidity peaks, which were particularly large in low to intermediate transmission settings.; This study reaffirms the importance of context specific intervention planning. Intervention planning must include combinations of malaria vector control and CM, and must consider both the pre-intervention transmission level and the intervention history to account for the loss of immunity and the potential for rebounds in disease burden
    corecore