133 research outputs found

    A dominant function of p38 mitogen-activated protein kinase signaling in receptor activator of nuclear factor-κB ligand expression and osteoclastogenesis induction by Aggregatibacter actinomycetemcomitans and Escherichia coli lipopolysaccharide

    Full text link
    Lipopolysaccharide from gram-negative bacteria is one of the microbial-associated molecular patterns that initiate the immune/inflammatory response, leading to the tissue destruction observed in periodontitis. The aim of this study was to evaluate the role of the p38 mitogen-activated protein kinase (MAPK) signaling pathway in lipopolysaccharide-induced receptor activator of nuclear factor-κB ligand (RANKL) expression by murine periodontal ligament cells. Material and Methods:  Expression of RANKL and osteoprotegerin mRNA was studied by reverse transcription-polymerase chain reaction upon stimulation with lipopolysaccharide from Escherichia coli and Aggregatibacter actinomycetemcomitans . The biochemical inhibitor SB203580 was used to evaluate the contribution of the p38 MAPK signaling pathway to lipopolysaccharide-induced RANKL and osteoprotegerin expression. Stable cell lines expressing dominant-negative forms of MAPK kinase (MKK)-3 and MKK6 were generated to confirm the role of the p38 MAPK pathway. An osteoclastogenesis assay using a coculture model of the murine monocytic cell line RAW 264.7 was used to determine if osteoclast differentiation induced by lipopolysaccharide-stimulated periodontal ligament was correlated with RANKL expression. Results:  Inhibiting p38 MAPK prior to lipopolysaccharide stimulation resulted in a significant decrease of RANKL mRNA expression. Osteoprotegerin mRNA expression was not affected by lipopolysaccharide or p38 MAPK. Lipopolysaccharide-stimulated periodontal ligament cells increased osteoclast differentiation, an effect that was completely blocked by osteoprotegerin and significantly decreased by inhibition of MKK3 and MKK6, upstream activators of p38 MAPK. Conditioned medium from murine periodontal ligament cultures did not increase osteoclast differentiation, indicating that periodontal ligament cells produced membrane-bound RANKL. Conclusion:  Lipopolysaccharide resulted in a significant increase of RANKL in periodontal ligament cells. The p38 MAPK pathway is required for lipopolysaccharide-induced membrane-bound RANKL expression in these cells.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65788/1/j.1600-0765.2007.01013.x.pd

    Interaction imaging with amplitude-dependence force spectroscopy

    Full text link
    Knowledge of surface forces is the key to understanding a large number of processes in fields ranging from physics to material science and biology. The most common method to study surfaces is dynamic atomic force microscopy (AFM). Dynamic AFM has been enormously successful in imaging surface topography, even to atomic resolution, but the force between the AFM tip and the surface remains unknown during imaging. Here, we present a new approach that combines high accuracy force measurements and high resolution scanning. The method, called amplitude-dependence force spectroscopy (ADFS) is based on the amplitude-dependence of the cantilever's response near resonance and allows for separate determination of both conservative and dissipative tip-surface interactions. We use ADFS to quantitatively study and map the nano-mechanical interaction between the AFM tip and heterogeneous polymer surfaces. ADFS is compatible with commercial atomic force microscopes and we anticipate its wide-spread use in taking AFM toward quantitative microscopy

    OX40 and 4-1BB delineate distinct immune profiles in sarcoma.

    Get PDF
    Systemic relapse after radiotherapy and surgery is the major cause of disease-related mortality in sarcoma patients. Combining radiotherapy and immunotherapy is under investigation as a means to improve response rates. However, the immune contexture of sarcoma is understudied. Here, we use a retrospective cohort of sarcoma patients, treated with neoadjuvant radiotherapy, and TCGA data. We explore therapeutic targets of relevance to sarcoma, using genomics and multispectral immunohistochemistry to provide insights into the tumor immune microenvironment across sarcoma subtypes. Differential gene expression between radioresponsive myxoid liposarcoma (MLPS) and more radioresistant undifferentiated pleomorphic sarcoma (UPS) indicated UPS contained higher transcript levels of a number of immunotherapy targets (CD73/NT5E, CD39/ENTPD1, CD25/IL2RA, and 4-1BB/TNFRSF9). We focused on 4-1BB/TNFRSF9 and other costimulatory molecules. In TCGA data, 4-1BB correlated to an inflamed and exhausted phenotype. OX40/TNFRSF4 and 4-1BB/TNFRSF9 were highly expressed in sarcoma subtypes versus other cancers. Despite OX40 and 4-1BB being described as Treg markers, we identified that they delineate distinct tumor immune profiles. This was true for sarcoma and other cancers. While only a limited number of samples could be analyzed, spatial analysis of OX40 expression identified two diverse phenotypes of OX40+ Tregs, one associated with and one independent of tertiary lymphoid structures (TLSs). Patient stratification is of intense interest for immunotherapies. We provide data supporting the viewpoint that a cohort of sarcoma patients, appropriately selected, are promising candidates for immunotherapies. Spatial profiling of OX40+ Tregs, in relation to TLSs, could be an additional metric to improve future patient stratification

    A phase-I trial of pre-operative, margin intensive, stereotactic body radiation therapy for pancreatic cancer: the 'SPARC' trial protocol.

    Get PDF
    BACKGROUND: Standard therapy for borderline-resectable pancreatic cancer in the UK is surgery with adjuvant chemotherapy, but rates of resection with clear margins are unsatisfactory and overall survival remains poor. Meta-analysis of single-arm studies shows the potential of neo-adjuvant chemo-radiotherapy but the relative radio-resistance of pancreatic cancer means the efficacy of conventional dose schedules is limited. Stereotactic radiotherapy achieves sufficient accuracy and precision to enable pre-operative margin-intensive dose escalation with the goal of increasing rates of clear resection margins and local disease control. METHODS/DESIGN: SPARC is a "rolling-six" design single-arm study to establish the maximum tolerated dose for margin-intensive stereotactic radiotherapy before resection of pancreatic cancer at high risk of positive resection margins. Eligible patients will have histologically or cytologically proven pancreatic cancer defined as borderline-resectable per National Comprehensive Cancer Network criteria or operable tumour in contact with vessels increasing the risk of positive margin. Up to 24 patients will be recruited from up to 5 treating centres and a 'rolling-six' design is utilised to minimise delays and facilitate ongoing recruitment during dose-escalation. Radiotherapy will be delivered in 5 daily fractions and surgery, if appropriate, will take place 5-6 weeks after radiotherapy. The margin-intense radiotherapy concept includes a systematic method to define the target volume for a simultaneous integrated boost in the region of tumour-vessel infiltration, and up to 4 radiotherapy dose levels will be investigated. Maximum tolerated dose is defined as the highest dose at which no more than 1 of 6 patients or 0 of 3 patients experience a dose limiting toxicity. Secondary endpoints include resection rate, resection margin status, response rate, overall survival and progression free survival at 12 and 24 months. Translational work will involve exploratory analyses of the cytological and humoral immunological responses to stereotactic radiotherapy in pancreatic cancer. Radiotherapy quality assurance of target definition and radiotherapy planning is enforced with pre-trial test cases and on-trial review. Recruitment began in April 2015. DISCUSSION: This prospective multi-centre study aims to establish the maximum tolerated dose of pre-operative margin-intensified stereotactic radiotherapy in pancreatic cancer at high risk of positive resection margins with a view to subsequent definitive comparison with other neoadjuvant treatment options

    ATR Inhibition Potentiates the Radiation-induced Inflammatory Tumor Microenvironment.

    Get PDF
    Purpose ATR inhibitors (ATRi) are in early phase clinical trials and have been shown to sensitize to chemotherapy and radiotherapy preclinically. Limited data have been published about the effect of these drugs on the tumor microenvironment.Experimental Design: We used an immunocompetent mouse model of HPV-driven malignancies to investigate the ATR inhibitor AZD6738 in combination with fractionated radiation (RT). Gene expression analysis and flow cytometry were performed posttherapy.Results Significant radiosensitization to RT by ATRi was observed alongside a marked increase in immune cell infiltration. We identified increased numbers of CD3+ and NK cells, but most of this infiltrate was composed of myeloid cells. ATRi plus radiation produced a gene expression signature matching a type I/II IFN response, with upregulation of genes playing a role in nucleic acid sensing. Increased MHC I levels were observed on tumor cells, with transcript-level data indicating increased antigen processing and presentation within the tumor. Significant modulation of cytokine gene expression (particularly CCL2, CCL5, and CXCL10) was found in vivo, with in vitro data indicating CCL3, CCL5, and CXCL10 are produced from tumor cells after ATRi + RT.Conclusions We show that DNA damage by ATRi and RT leads to an IFN response through activation of nucleic acid-sensing pathways. This triggers increased antigen presentation and innate immune cell infiltration. Further understanding of the effect of this combination on the immune response may allow modulation of these effects to maximize tumor control through antitumor immunity

    Visual Stability and the Motion Aftereffect: A Psychophysical Study Revealing Spatial Updating

    Get PDF
    Eye movements create an ever-changing image of the world on the retina. In particular, frequent saccades call for a compensatory mechanism to transform the changing visual information into a stable percept. To this end, the brain presumably uses internal copies of motor commands. Electrophysiological recordings of visual neurons in the primate lateral intraparietal cortex, the frontal eye fields, and the superior colliculus suggest that the receptive fields (RFs) of special neurons shift towards their post-saccadic positions before the onset of a saccade. However, the perceptual consequences of these shifts remain controversial. We wanted to test in humans whether a remapping of motion adaptation occurs in visual perception

    Altered Metabolism and Persistent Starvation Behaviors Caused by Reduced AMPK Function in Drosophila

    Get PDF
    Organisms must utilize multiple mechanisms to maintain energetic homeostasis in the face of limited nutrient availability. One mechanism involves activation of the heterotrimeric AMP-activated protein kinase (AMPK), a cell-autonomous sensor to energetic changes regulated by ATP to AMP ratios. We examined the phenotypic consequences of reduced AMPK function, both through RNAi knockdown of the gamma subunit (AMPKγ) and through expression of a dominant negative alpha (AMPKα) variant in Drosophila melanogaster. Reduced AMPK signaling leads to hypersensitivity to starvation conditions as measured by lifespan and locomotor activity. Locomotor levels in flies with reduced AMPK function were lower during unstressed conditions, but starvation-induced hyperactivity, an adaptive response to encourage foraging, was significantly higher than in wild type. Unexpectedly, total dietary intake was greater in animals with reduced AMPK function yet total triglyceride levels were lower. AMPK mutant animals displayed starvation-like lipid accumulation patterns in metabolically key liver-like cells, oenocytes, even under fed conditions, consistent with a persistent starved state. Measurements of O2 consumption reveal that metabolic rates are greater in animals with reduced AMPK function. Lastly, rapamycin treatment tempers the starvation sensitivity and lethality associated with reduced AMPK function. Collectively, these results are consistent with models that AMPK shifts energy usage away from expenditures into a conservation mode during nutrient-limited conditions at a cellular level. The highly conserved AMPK subunits throughout the Metazoa, suggest such findings may provide significant insight for pharmaceutical strategies to manipulate AMPK function in humans

    The Neuropeptide Allatostatin A Regulates Metabolism and Feeding Decisions in Drosophila

    Get PDF
    Coordinating metabolism and feeding is important to avoid obesity and metabolic diseases, yet the underlying mechanisms, balancing nutrient intake and metabolic expenditure, are poorly understood. Several mechanisms controlling these processes are conserved in Drosophila, where homeostasis and energy mobilization are regulated by the glucagon-related adipokinetic hormone (AKH) and the Drosophila insulin-like peptides (DILPs). Here, we provide evidence that the Drosophila neuropeptide Allatostatin A (AstA) regulates AKH and DILP signaling. The AstA receptor gene, Dar-2, is expressed in both the insulin and AKH producing cells. Silencing of Dar-2 in these cells results in changes in gene expression and physiology associated with reduced DILP and AKH signaling and animals lacking AstA accumulate high lipid levels. This suggests that AstA is regulating the balance between DILP and AKH, believed to be important for the maintenance of nutrient homeostasis in response to changing ratios of dietary sugar and protein. Furthermore, AstA and Dar-2 are regulated differentially by dietary carbohydrates and protein and AstA-neuronal activity modulates feeding choices between these types of nutrients. Our results suggest that AstA is involved in assigning value to these nutrients to coordinate metabolic and feeding decisions, responses that are important to balance food intake according to metabolic needs

    Mg-chelatase H subunit affects ABA signaling in stomatal guard cells, but is not an ABA receptor in Arabidopsis thaliana

    Get PDF
    Mg-chelatase H subunit (CHLH) is a multifunctional protein involved in chlorophyll synthesis, plastid-to-nucleus retrograde signaling, and ABA perception. However, whether CHLH acts as an actual ABA receptor remains controversial. Here we present evidence that CHLH affects ABA signaling in stomatal guard cells but is not itself an ABA receptor. We screened ethyl methanesulfonate-treated Arabidopsis thaliana plants with a focus on stomatal aperture-dependent water loss in detached leaves and isolated a rapid transpiration in detached leaves 1 (rtl1) mutant that we identified as a novel missense mutant of CHLH. The rtl1 and CHLH RNAi plants showed phenotypes in which stomatal movements were insensitive to ABA, while the rtl1 phenotype showed normal sensitivity to ABA with respect to seed germination and root growth. ABA-binding analyses using 3H-labeled ABA revealed that recombinant CHLH did not bind ABA, but recombinant pyrabactin resistance 1, a reliable ABA receptor used as a control, showed specific binding. Moreover, we found that the rtl1 mutant showed ABA-induced stomatal closure when a high concentration of extracellular Ca2+ was present and that a knockout mutant of Mg-chelatase I subunit (chli1) showed the same ABA-insensitive phenotype as rtl1. These results suggest that the Mg-chelatase complex as a whole affects the ABA-signaling pathway for stomatal movements
    corecore