2,549 research outputs found

    On-chip analysis, indexing and screening for chemical producing bacteria in microfluidic static droplet array

    Get PDF
    Economic production of chemicals from microbes necessitates development of high-producing strains and an efficient screening technology is crucial to maximize the effect of the most popular strain improvement method, the combinatorial approach. However, high-throughput screening has been limited for assessment of diverse intracellular metabolites at the single-cell level. Herein, we established a screening platform that couples a microfluidic static droplet array (SDA) and an artificial riboswitch to analyse intracellular metabolite concentration from single microbial cells. Using this system, we entrapped single Escherichia coli cells in SDA to measure intracellular L-tryptophan concentrations. It was validated that intracellular L-tryptophan concentration can be evaluated by the fluorescence from the riboswitch. Moreover, high-producing strains were successfully screened from a mutagenized library, exhibiting up to 145% productivity compared to its parental strain. This platform will be widely applicable to strain improvement for diverse metabolites by developing new artificial riboswitches.111713Ysciescopu

    Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO2

    Full text link
    The linear dispersion relation in graphene[1,2] gives rise to a surprising prediction: the resistivity due to isotropic scatterers (e.g. white-noise disorder[3] or phonons[4-8]) is independent of carrier density n. Here we show that acoustic phonon scattering[4-6] is indeed independent of n, and places an intrinsic limit on the resistivity in graphene of only 30 Ohm at room temperature (RT). At a technologically-relevant carrier density of 10^12 cm^-2, the mean free path for electron-acoustic phonon scattering is >2 microns, and the intrinsic mobility limit is 2x10^5 cm^2/Vs, exceeding the highest known inorganic semiconductor (InSb, ~7.7x10^4 cm^2/Vs[9]) and semiconducting carbon nanotubes (~1x10^5 cm^2/Vs[10]). We also show that extrinsic scattering by surface phonons of the SiO2 substrate[11,12] adds a strong temperature dependent resistivity above ~200 K[8], limiting the RT mobility to ~4x10^4 cm^2/Vs, pointing out the importance of substrate choice for graphene devices[13].Comment: 16 pages, 3 figure

    Monodisperse Hollow Tricolor Pigment Particles for Electronic Paper

    Get PDF
    A general approach has been designed to blue, green, and red pigments by metal ions doping hollow TiO 2. The reaction involves initial formation of PS at TiO2 core–shell nanoparticles via a mixed-solvent method, and then mixing with metal ions solution containing PEG, followed calcining in the atmosphere. The as-prepared hollow pigments exhibit uniform size, bright color, and tunable density, which are fit for electronic paper display

    Antisense oligonucleotides and all-trans retinoic acid have a synergistic anti-tumor effect on oral squamous cell carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antisense oligonucleotides against hTR (As-ODN-hTR) have shown promising results as treatment strategies for various human malignancies. All-trans retinoic acid (ATRA) is a signalling molecule with important roles in differentiation and apoptosis. Biological responses to ATRA are currently used therapeutically in various human cancers. The aim of this study was to evaluate the anti-tumor effects of As-ODN-hTR combined with ATRA in vivo.</p> <p>Methods</p> <p>In situ human oral squamous cell carcinoma (OSCC) models were established by subcutaneous injection of Tca8113 cells. Mice were treated with sense oligonucleotides against hTR(S-ODN-hTR) alone, As-ODN-hTR alone, ATRA alone, As-ODN-hTR plus ATRA, or S-ODN-hTR plus ATRA. Tumor size and weight were assessed in the mice. Telomerase activity was detected by a TRAP assay, apoptotic cells were evaluated with a Tunel assay, the expression of apoptosis-related proteins (Bcl-2 and Bax) was evaluated by immunohistochemistry and ultrastructural morphological changes in the tumor specimen were examined.</p> <p>Results</p> <p>Both As-ODN-hTR and ATRA can significantly inhibit tumor growth in this OSCC xenograft solid-tumor model, and the combination of the two agents had a synergistic anti-tumorogenic effect. We also demonstrated that this anti-tumor effect correlated with inhibition of telomerase activity. Furthermore, significant increases in the number of apoptotic cells, typical apoptotic morphology and a downregulation of the anti-apoptotic protein, bcl-2 were observed in the treated tissues.</p> <p>Conclusion</p> <p>The combination of As-ODN-hTR and ATRA has a synergistic anti-tumor effect. This anti-tumor effect can be mainly attributed to apoptosis induced by a decrease in telomerase activity. Bcl-2 plays an important role in this process. Therefore, combining As-ODN-hTR and ATRA may be an approach for the treatment of human oral squamous cell carcinoma.</p

    FGFR3IIIS: a novel soluble FGFR3 spliced variant that modulates growth is frequently expressed in tumour cells

    Get PDF
    Fibroblast growth factor receptor 3 (FGFR3) is one of four high-affinity tyrosine kinase receptors for the FGF family of ligands, frequently associated with growth arrest and induction of differentiation. The extracellular immunoglobulin (IgG)-like domains II and III are responsible for ligand binding; alternative usage of exons IIIb and IIIc of the Ig-like domain III determining the ligand-binding specificity of the receptor. By reverse transcriptase polymerase chain reaction (RT–PCR) a novel FGFR3IIIc variant FGFR3IIIS, expressed in a high proportion of tumours and tumour cell lines but rarely in normal tissues, has been identified. Unlike recently described nonsense transcripts of FGFR3, the coding region of FGFR3IIIS remains in-frame producing a novel protein. The protein product is coexpressed with FGFR3IIIc in the membrane and soluble cell fractions; expression in the soluble fraction is decreased after exposure to bFGF but not aFGF. Knockout of FGFR3IIIS using antisense has a growth-inhibitory effect in vitro, suggesting a dominant-negative function for FGFR3IIIS inhibiting FGFR3-induced growth arrest. In summary, alternative splicing of the FGFR3 Ig-domain III represents a mechanism for the generation of receptor diversity. FGFR3IIIS may regulate FGF and FGFR trafficking and function, possibly contributing to the development of a malignant phenotype

    Considerable Enhancement of Field Emission of SnO2Nanowires by Post-Annealing Process in Oxygen at High Temperature

    Get PDF
    The field emission properties of SnO2nanowires fabricated by chemical vapor deposition with metallic catalyst-assistance were investigated. For the as-fabricated SnO2nanowires, the turn-on and threshold field were 4.03 and 5.4 V/μm, respectively. Considerable enhancement of field emission of SnO2nanowires was obtained by a post-annealing process in oxygen at high temperature. When the SnO2nanowires were post-annealed at 1,000 °C in oxygen, the turn-on and threshold field were decreased to 3.77 and 4.4 V/μm, respectively, and the current density was increased to 6.58 from 0.3 mA/cm2at the same applied electric field of 5.0 V/μm

    Thermal Properties of Graphene, Carbon Nanotubes and Nanostructured Carbon Materials

    Full text link
    Recent years witnessed a rapid growth of interest of scientific and engineering communities to thermal properties of materials. Carbon allotropes and derivatives occupy a unique place in terms of their ability to conduct heat. The room-temperature thermal conductivity of carbon materials span an extraordinary large range - of over five orders of magnitude - from the lowest in amorphous carbons to the highest in graphene and carbon nanotubes. I review thermal and thermoelectric properties of carbon materials focusing on recent results for graphene, carbon nanotubes and nanostructured carbon materials with different degrees of disorder. A special attention is given to the unusual size dependence of heat conduction in two-dimensional crystals and, specifically, in graphene. I also describe prospects of applications of graphene and carbon materials for thermal management of electronics.Comment: Review Paper; 37 manuscript pages; 4 figures and 2 boxe

    Stereotactic body radiation therapy with or without transarterial chemoembolization for patients with primary hepatocellular carcinoma: preliminary analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objectives of this retrospective study was to evaluate the efficacy of stereotactic body radiation therapy (SBRT) for small non-resectable hepatocellular carcinoma (HCC) and SBRT combined with transarterial chemoembolization (TACE) for advanced HCC with portal vein tumor thrombosis (PVTT).</p> <p>Methods</p> <p>Thirty one patients with HCC who were treated with SBRT were used for the study. We studied 32 HCC lesions, where 23 lesions (22 patients) were treated targeting small non-resectable primary HCC, and 9 lesions (9 patients) targeting PVTT using the Cyberknife. All the 9 patients targeting PVTT received TACE for the advanced HCC. Tumor volume was 3.6–57.3 cc (median, 25.2 cc) and SBRT dose was 30–39 Gy (median, 36 Gy) in 3 fractions for consecutive days for 70–85% of the planned target volume.</p> <p>Results</p> <p>The median follow up was 10.5 months. The overall response rate was 71.9% [small HCC: 82.6% (19/23), advanced HCC with PVTT: 44.4% (4/9)], with the complete and partial response rates of 31.3% [small HCC: 26.1% (6/23), advanced HCC with PVTT: 11.1% (1/9)], and 50.0% [small HCC: 56.5% (13/23), advanced HCC with PVTT: 33.3% (3/9)], respectively. The median survival period of small HCC and advanced HCC with PVTT patients was 12 months and 8 months, respectively. No patient experienced Grade 4 toxicity.</p> <p>Conclusion</p> <p>SBRT for small HCC and SBRT combined with TACE for advanced HCC with PVTT showed feasible treatment modalities with minimal side effects in selected patients with primary HCC.</p
    corecore