322 research outputs found

    Differences in signaling properties of the cytoplasmic domains of the insulin receptor and insulin-like growth factor receptor in 3T3-L1 adipocytes

    Get PDF
    Insulin and insulin-like growth factors (IGFs) elicit distinct but overlapping biological effects in vivo. To investigate whether differences in intrinsic signaling capacity of receptors contribute to biological specificity, we constructed chimeric receptors containing the extracellular portion of the neurotrophin receptor TrkC fused to the intracellular portion of the insulin or IGF-I receptors, Chimeras were stably expressed in 3T3-L1 adipocytes at levels comparable to endogenous insulin receptors and were efficiently activated by neurotrophin-3. The wild-type insulin receptor chimera mediated approximately 2-fold greater phosphorylation of insulin receptor substrate 1 (IRS-1), association of IRS-1 with phosphoinositide 3-kinase, stimulation of glucose uptake, and GLUT4 translocation, compared with the IGF-I receptor chimera. In contrast, the IGF-I receptor chimera mediated more effective Shc phosphorylation, association of Shc with Grb2, and activation of mitogen-activated protein kinase compared with the insulin receptor chimera. The two receptors elicited similar activation of protein kinase B, p70S6 kinase, and glycogen synthesis. We conclude that the insulin receptor mediates some aspects of metabolic signaling in adipocytes more effectively than the IGF-I receptor, as a consequence of more efficient phosphorylation of IRS-1 and greater recruitment/activation of phosphoinositide 3-kinase

    The osteology of ‘Periptychus carinidens’: a robust, ungulate-like placental mammal (Mammalia: Periptychidae) from the Paleocene of North America

    Get PDF
    Periptychus is the archetypal genus of Periptychidae, a clade of prolific Paleocene 'condylarth' mammals from North America that were among the first placental mammals to radiate after the end-Cretaceous extinction, remarkable for their distinctive dental anatomy. A comprehensive understanding of the anatomy of Periptychus has been hindered by a lack of cranial and postcranial material and only cursory description of existing material. We comprehensively describe the cranial, dental and postcranial anatomy of Periptychus carinidens based on new fossil material from the early Paleocene (Torrejonian) of New Mexico, USA. The cranial anatomy of Periptychus is broadly concurrent with the inferred plesiomorphic eutherian condition, albeit more robust in overall construction. The rostrum is moderately elongate with no constriction, the facial region is broad, and the braincase is small with a well-exposed mastoid on the posterolateral corner and tall sagittal and nuchal crests. The dentition of Periptychus is characterized by strongly crenulated enamel, enlarged upper and lower premolars with a tall centralised paracone/protoconid. The postcranial skeleton of Periptychus is that of a robust, medium-sized (~20 Kg) stout-limbed animal that was incipiently mediportal and adopted a plantigrade stance. The structure of the fore- and hindlimb of Periptychus corresponds to that of a typically terrestrial mammal, while morphological features of the forelimb such as the low tubercles of the humerus, long and prominent deltopectoral crest, pronounced medial epicondyle, and hemispherical capitulum indicate some scansorial and/or fossorial ability. Most striking is the strongly dorsoplantarly compressed astragalus of Periptychus, which in combination with the distal crus and calcaneal morphology indicates a moderately mobile cruropedal joint. The anatomy of Periptychus is unique and lacks any extant analogue; it combines a basic early placental body plan with numerous unique specializations in its dental, cranial and postcranial anatomy that exemplify the ability of mammals to adapt and evolve following catastrophic environmental upheaval

    A mathematical model for breath gas analysis of volatile organic compounds with special emphasis on acetone

    Full text link
    Recommended standardized procedures for determining exhaled lower respiratory nitric oxide and nasal nitric oxide have been developed by task forces of the European Respiratory Society and the American Thoracic Society. These recommendations have paved the way for the measurement of nitric oxide to become a diagnostic tool for specific clinical applications. It would be desirable to develop similar guidelines for the sampling of other trace gases in exhaled breath, especially volatile organic compounds (VOCs) which reflect ongoing metabolism. The concentrations of water-soluble, blood-borne substances in exhaled breath are influenced by: (i) breathing patterns affecting gas exchange in the conducting airways; (ii) the concentrations in the tracheo-bronchial lining fluid; (iii) the alveolar and systemic concentrations of the compound. The classical Farhi equation takes only the alveolar concentrations into account. Real-time measurements of acetone in end-tidal breath under an ergometer challenge show characteristics which cannot be explained within the Farhi setting. Here we develop a compartment model that reliably captures these profiles and is capable of relating breath to the systemic concentrations of acetone. By comparison with experimental data it is inferred that the major part of variability in breath acetone concentrations (e.g., in response to moderate exercise or altered breathing patterns) can be attributed to airway gas exchange, with minimal changes of the underlying blood and tissue concentrations. Moreover, it is deduced that measured end-tidal breath concentrations of acetone determined during resting conditions and free breathing will be rather poor indicators for endogenous levels. Particularly, the current formulation includes the classical Farhi and the Scheid series inhomogeneity model as special limiting cases.Comment: 38 page

    Making Informed Choices about Microarray Data Analysis

    Get PDF
    This article describes the typical stages in the analysis of microarray data for non-specialist researchers in systems biology and medicine. Particular attention is paid to significant data analysis issues that are commonly encountered among practitioners, some of which need wider airing. The issues addressed include experimental design, quality assessment, normalization, and summarization of multiple-probe data. This article is based on the ISMB 2008 tutorial on microarray data analysis. An expanded version of the material in this article and the slides from the tutorial can be found at http://www.people.vcu.edu/~mreimers/OGMDA/index.html

    γδ T Cells Are Reduced and Rendered Unresponsive by Hyperglycemia and Chronic TNFα in Mouse Models of Obesity and Metabolic Disease

    Get PDF
    Epithelial cells provide an initial line of defense against damage and pathogens in barrier tissues such as the skin; however this balance is disrupted in obesity and metabolic disease. Skin γδ T cells recognize epithelial damage, and release cytokines and growth factors that facilitate wound repair. We report here that hyperglycemia results in impaired skin γδ T cell proliferation due to altered STAT5 signaling, ultimately resulting in half the number of γδ T cells populating the epidermis. Skin γδ T cells that overcome this hyperglycemic state are unresponsive to epithelial cell damage due to chronic inflammatory mediators, including TNFα. Cytokine and growth factor production at the site of tissue damage was partially restored by administering neutralizing TNFα antibodies in vivo. Thus, metabolic disease negatively impacts homeostasis and functionality of skin γδ T cells, rendering host defense mechanisms vulnerable to injury and infection

    Promoter Methylation in Head and Neck Squamous Cell Carcinoma Cell Lines Is Significantly Different than Methylation in Primary Tumors and Xenografts

    Get PDF
    Studies designed to identify novel methylation events related to cancer often employ cancer cell lines in the discovery phase of the experiments and have a relatively low rate of discovery of cancer-related methylation events. An alternative algorithm for discovery of novel methylation in cancer uses primary tumor-derived xenografts instead of cell lines as the primary source of nucleic acid for evaluation. We evaluated DNA extracted from primary head and neck squamous cell carcinomas (HNSCC), xenografts grown from these primary tumors in nude mice, HNSCC-derived cell lines, normal oral mucosal samples, and minimally transformed oral keratinocyte-derived cell lines using Illumina Infinum Humanmethylation 27 genome-wide methylation microarrays. We found >2,200 statistically significant methylation differences between cancer cell lines and primary tumors and when comparing normal oral mucosa to keratinocyte cell lines. We found no statistically significant promoter methylation differences between primary tumor xenografts and primary tumors. This study demonstrates that tumor-derived xenografts are highly accurate representations of promoter methylation in primary tumors and that cancer derived cell lines have significant drawbacks for discovery of promoter methylation alterations in primary tumors. These findings also support use of primary tumor xenografts for the study of methylation in cancer, drug discovery, and the development of personalized cancer treatments

    Thiolutin is a zinc chelator that inhibits the Rpn11 and other JAMM metalloproteases

    Get PDF
    Thiolutin is a disulfide-containing antibiotic and anti-angiogenic compound produced by Streptomyces. Its biological targets are not known. We show that reduced thiolutin is a zinc chelator that inhibits the JAB1/MPN/Mov34 (JAMM) domain–containing metalloprotease Rpn11, a deubiquitinating enzyme of the 19S proteasome. Thiolutin also inhibits the JAMM metalloproteases Csn5, the deneddylase of the COP9 signalosome; AMSH, which regulates ubiquitin-dependent sorting of cell-surface receptors; and BRCC36, a K63-specific deubiquitinase of the BRCC36-containing isopeptidase complex and the BRCA1–BRCA2-containing complex. We provide evidence that other dithiolopyrrolones also function as inhibitors of JAMM metalloproteases

    TNPO2 variants associate with human developmental delays, neurologic deficits, and dysmorphic features and alter TNPO2 activity in Drosophila

    Get PDF
    Transportin-2 (TNPO2) mediates multiple pathways including non-classical nucleocytoplasmic shuttling of >60 cargoes, such as developmental and neuronal proteins. We identified 15 individuals carrying de novo coding variants in TNPO2 who presented with global developmental delay (GDD), dysmorphic features, ophthalmologic abnormalities, and neurological features. To assess the nature of these variants, functional studies were performed in Drosophila. We found that fly dTnpo (orthologous to TNPO2) is expressed in a subset of neurons. dTnpo is critical for neuronal maintenance and function as downregulating dTnpo in mature neurons using RNAi disrupts neuronal activity and survival. Altering the activity and expression of dTnpo using mutant alleles or RNAi causes developmental defects, including eye and wing deformities and lethality. These effects are dosage dependent as more severe phenotypes are associated with stronger dTnpo loss. Interestingly, similar phenotypes are observed with dTnpo upregulation and ectopic expression of TNPO2, showing that loss and gain of Transportin activity causes developmental defects. Further, proband-associated variants can cause more or less severe developmental abnormalities compared to wild-type TNPO2 when ectopically expressed. The impact of the variants tested seems to correlate with their position within the protein. Specifically, those that fall within the RAN binding domain cause more severe toxicity and those in the acidic loop are less toxic. Variants within the cargo binding domain show tissue-dependent effects. In summary, dTnpo is an essential gene in flies during development and in neurons. Further, proband-associated de novo variants within TNPO2 disrupt the function of the encoded protein. Hence, TNPO2 variants are causative for neurodevelopmental abnormalities

    "Hook"-calibration of GeneChip-microarrays: Chip characteristics and expression measures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microarray experiments rely on several critical steps that may introduce biases and uncertainty in downstream analyses. These steps include mRNA sample extraction, amplification and labelling, hybridization, and scanning causing chip-specific systematic variations on the raw intensity level. Also the chosen array-type and the up-to-dateness of the genomic information probed on the chip affect the quality of the expression measures. In the accompanying publication we presented theory and algorithm of the so-called hook method which aims at correcting expression data for systematic biases using a series of new chip characteristics.</p> <p>Results</p> <p>In this publication we summarize the essential chip characteristics provided by this method, analyze special benchmark experiments to estimate transcript related expression measures and illustrate the potency of the method to detect and to quantify the quality of a particular hybridization. It is shown that our single-chip approach provides expression measures responding linearly on changes of the transcript concentration over three orders of magnitude. In addition, the method calculates a detection call judging the relation between the signal and the detection limit of the particular measurement. The performance of the method in the context of different chip generations and probe set assignments is illustrated. The hook method characterizes the RNA-quality in terms of the 3'/5'-amplification bias and the sample-specific calling rate. We show that the proper judgement of these effects requires the disentanglement of non-specific and specific hybridization which, otherwise, can lead to misinterpretations of expression changes. The consequences of modifying probe/target interactions by either changing the labelling protocol or by substituting RNA by DNA targets are demonstrated.</p> <p>Conclusion</p> <p>The single-chip based hook-method provides accurate expression estimates and chip-summary characteristics using the natural metrics given by the hybridization reaction with the potency to develop new standards for microarray quality control and calibration.</p
    • …
    corecore