6 research outputs found

    A Hunter Patient with a Severe Phenotype Reveals Two Large Deletions and Two Duplications Extending 1.2 Mb Distally to IDS Locus

    No full text
    Mucopolysaccharidosis type II (Hunter syndrome, MPS II) is an X-linked lysosomal storage disorder caused by the deficit of iduronate 2-sulfatase (IDS), an enzyme involved in the glycosaminoglycans (GAGs) degradation. We here report the case of a 9-year-old boy who was diagnosed with an extremely severe form of MPS II at 10 months of age. Sequencing of the IDS gene revealed the deletion of exons 1-7, extending distally and removing the entire pseudogene IDSP1. The difficulty to define the boundaries of the deletion and the particular severity of the patient phenotype suggested to verify the presence of pathological copy number variations (CNVs) in the genome, by the array CGH (aCGH) technology. The examination revealed the presence of two deletions alternate with two duplications, overall affecting a region of about 1.2 Mb distally to IDS gene. This is the first complex rearrangement involving IDS and extending to a large region located distally to it described in a severe Hunter patient, as evidenced by the CNVs databases interrogated. The analysis of the genes involved in the rearrangement and of the disorders correlated with them did not help to clarify the phenotype observed in our patient, except for the deletion of the IDS gene, which explains per se the Hunter phenotype. However, this cannot exclude a potential "contiguous gene syndrome" as well as the future rising of additional pathological symptoms associated with the other extra genes involved in the identified rearrangement

    Deletion Xq27.3q28 in female patient with global developmental delays and skewed X-inactivation

    No full text
    BACKGROUND: Global developmental delay and mental retardation are associated with X-linked disorders including Hunter syndrome (mucopolysaccharidosis type II) and Fragile X syndrome (FXS). Single nucleotide mutations in the iduronate 2-sulfatase (IDS) gene at Xq28 most commonly cause Hunter syndrome while a CGG expansion in the FMR1 gene at Xq27.3 is associated with Fragile X syndrome. Gene deletions of the Xq27-28 region are less frequently found in either condition with rare reports in females. Additionally, an association between Xq27-28 deletions and skewed X-inactivation of the normal X chromosome observed in previous studies suggested a primary role of the Xq27-28 region in X-inactivation. CASE PRESENTATION: We describe the clinical, molecular and biochemical evaluations of a four year-old female patient with global developmental delay and a hemizygous deletion of Xq27.3q28 (144,270,614-154,845,961 bp), a 10.6 Mb region that contains >100 genes including IDS and FMR1. A literature review revealed rare cases with similar deletions that included IDS and FMR1 in females with developmental delay, variable features of Hunter syndrome, and skewed X-inactivation of the normal X chromosome. In contrast, our patient exhibited skewed X-inactivation of the deleted X chromosome and tested negative for Hunter syndrome. CONCLUSIONS: This is a report of a female with a 10.6 Mb Xq27-28 deletion with skewed inactivation of the deleted X chromosome. Contrary to previous reports, our observations do not support a primary role of the Xq27-28 region in X-inactivation. A review of the genes in the deletion region revealed several potential genes that may contribute to the patient’s developmental delays, and sequencing of the active X chromosome may provide insight into the etiology of this clinical presentation
    corecore