20 research outputs found
Decreased Toll-like receptor 8 expression and lower TNF-alpha synthesis in infants with acute RSV infection
<p>Abstract</p> <p>Background</p> <p>Toll-like receptors (TLRs) are part of the innate immune system, able to recognize pathogen-associated molecular patterns and activate immune system upon pathogen challenge. Respiratory syncytial virus (RSV) is a RNA virus particularly detrimental in infancy. It could cause severe lower respiratory tract disease and recurrent infections related to inadequate development of anti-viral immunity. The reason could be inadequate multiple TLRs engagement, including TLR8 in recognition of single-stranded viral RNA and diminished synthesis of inflammatory mediators due to a lower expression.</p> <p>Methods</p> <p>Intracellular TLR8 expression in peripheral blood monocytes from RSV-infected infants was profiled and compared to healthy adults and age matched controls. Whether the observed difference in TLR8 expression is a transitory effect, infants in convalescent phase (4-6 weeks later) were retested. Specific TLR8-mediated TNF-α production in monocytes during an acute and convalescent phase was analyzed.</p> <p>Results</p> <p>RSV-infected and healthy infants had lower percentage of TLR8-expressing monocytes than healthy adults whereas decreased of TLR8 protein levels were detected only for RSV-infected infant group. Lower protein levels of TLR8 in monocytes from RSV-infected infants, compared to healthy infants, negatively correlated with respiratory frequency and resulted in lower TNF-α synthesis upon a specific TLR8 stimulation. In the convalescent phase, levels of TLR8 increased, accompanied by increased TNF-α synthesis compared to acute infection.</p> <p>Conclusions</p> <p>Lower TLR8 expression observed in monocytes, during an acute RSV infection, might have a dampening impact on early anti-viral cytokine production necessary to control RSV replication, and subsequently initiate an adaptive Th1 type immune response leading to severe disease in infected infants.</p
Targeting Toll-like receptor 7/8 enhances uptake of apoptotic leukemic cells by monocyte-derived dendritic cells but interferes with subsequent cytokine-induced maturation
Therapeutic vaccination with dendritic cells (DC) is an emerging investigational therapy for eradication of minimal residual disease in acute myeloid leukemia. Various strategies are being explored in manufacturing DC vaccines ex vivo, e.g., monocyte-derived DC (MoDC) loaded with leukemia-associated antigens (LAA). However, the optimal source of LAA and the choice of DC-activating stimuli are still not well defined. Here, loading with leukemic cell preparations (harboring both unknown and known LAA) was explored in combination with a DC maturation-inducing cytokine cocktail (CC; IL-1β, IL-6, TNF-α, and PGE2) and Toll-like receptor ligands (TLR-L) to optimize uptake. Since heat shock induced apoptotic blasts were more efficiently taken up than lysates, we focused on uptake of apoptotic leukemic cells. Uptake of apoptotic blast was further enhanced by the TLR7/8-L R848 (20–30%); in contrast, CC-induced maturation inhibited uptake. CC, and to a lesser extent R848, enhanced the ability of MoDC to migrate and stimulate T cells. Furthermore, class II-associated invariant chain peptide expression was down-modulated after R848- or CC-induced maturation, indicating enhanced processing and presentation of antigenic peptides. To improve both uptake and maturation, leukemic cells and MoDC were co-incubated with R848 for 24 h followed by addition of CC. However, this approach interfered with CC-mediated MoDC maturation as indicated by diminished migratory and T cell stimulatory capacity, and the absence of IL-12 production. Taken together, our data demonstrate that even though R848 improved uptake of apoptotic leukemic cells, the sequential use of R848 and CC is counter-indicated due to its adverse effects on MoDC maturation
Poly(I:C) Enhances the Susceptibility of Leukemic Cells to NK Cell Cytotoxicity and Phagocytosis by DC
α Active specific immunotherapy aims at stimulating the host's immune system to recognize and eradicate malignant cells. The concomitant activation of dendritic cells (DC) and natural killer (NK) cells is an attractive modality for immune-based therapies. Inducing immunogenic cell death to facilitate tumor cell recognition and phagocytosis by neighbouring immune cells is of utmost importance for guiding the outcome of the immune response. We previously reported that acute myeloid leukemic (AML) cells in response to electroporation with the synthetic dsRNA analogue poly(I:C) exert improved immunogenicity, demonstrated by enhanced DC-activating and NK cell interferon-γ-inducing capacities. To further invigorate the potential of these immunogenic tumor cells, we explored their effect on the phagocytic and cytotoxic capacity of DC and NK cells, respectively. Using single-cell analysis, we assessed these functionalities in two- and three-party cocultures. Following poly(I:C) electroporation AML cells become highly susceptible to NK cell-mediated killing and phagocytosis by DC. Moreover, the enhanced killing and the improved uptake are strongly correlated. Interestingly, tumor cell killing, but not phagocytosis, is further enhanced in three-party cocultures provided that these tumor cells were upfront electroporated with poly(I:C). Altogether, poly(I:C)-electroporated AML cells potently activate DC and NK cell functions and stimulate NK-DC cross-talk in terms of tumor cell killing. These data strongly support the use of poly(I:C) as a cancer vaccine component, providing a way to overcome immune evasion by leukemic cells
Polyinosinic polycytidylic acid prevents efficient antigen expression after mRNA electroporation of clinical grade dendritic cells.
Contains fulltext :
79503.pdf (publisher's version ) (Closed access)Tumor-derived peptides are used frequently as antigen (Ag) source in dendritic cell (DC) therapy in cancer patients. An alternative is to load DC with tumor-associated Ag (TAA)-encoding RNA. RNA-loading obviates prior knowledge of CTL and Th epitopes in the Ag. Multiple epitopes for many HLA alleles (both MHC class I and class II) are encoded by the RNA and loading is independent of the patient's HLA make-up. Herein, we determined the optimal conditions for mRNA-electroporation of monocyte-derived DC for clinical application in relation to different maturation cocktails. The data demonstrate that TAA carcinoembryonic antigen, gp100 and tyrosinase are expressed already 30 min after electroporation with the encoding mRNA. Moreover, gp100-specific CTL are activated by gp100 mRNA-electroporated DC. Importantly, we show here that the presence of polyinosinic-polycytidylic acid [poly(I:C)] in the maturation cocktail prevents effective protein expression of the electroporated mRNA as well as subsequent CTL recognition. This effect of poly(I:C) correlates with the induction of IFN-induced genes and innate anti-viral effector molecules in DC. Together these data show that electroporation of mature DC with TAA-encoding mRNA is attractive for use in DC vaccination protocols in cancer patients, but protein expression should be tested for each maturation cocktail
Loading of acute myeloid leukemia cells with poly(I:C) by electroporation
Item does not contain fulltextIn this chapter, we describe the technique of electroporation as an efficient method to load primary leukemic cells with the double-stranded RNA (dsRNA) analogue, polyriboinosinic polyribocytidylic acid (poly(I:C)), and detail on the delicate freezing and thawing procedure of primary leukemic cells.Electroporation is a non-viral gene transfer method by which short-term pores in the membrane of cells are generated by an electrical pulse, allowing molecules to enter the cell. RNA electroporation, a technique developed in our laboratory, is a widely used and versatile transfection method for efficient introduction of both coding RNA (messenger RNA) and non-coding RNA, e.g., dsRNA and small interfering (siRNA), into mammalian cells. Accurate cell processing and storage of patient material is essential for optimal recovery and quality of the cell product for downstream applications