14,739 research outputs found

    Lagrangian formulation for noncommutative nonlinear systems

    Full text link
    In this work we use the well known formalism developed by Faddeev and Jackiw to introduce noncommutativity within two nonlinear systems, the SU(2) Skyrme and O(3) nonlinear sigma models. The final result is the Lagrangian formulations for the noncommutative versions of both models. The possibility of obtaining different noncommutative versions for these nonlinear systems is demonstrated.Comment: 8 pages. Revex 4.

    Properties of bars in the local universe

    Full text link
    We studied the fraction and properties of bars in a sample of about 3000 galaxies extracted from SDSS-DR5. This represents a volume limited sample with galaxies located between redshift 0.01-20, and inclination i < 60. Interacting galaxies were excluded from the sample. The fraction of barred galaxies in our sample is 45%. We found that 32% of S0s, 55% of early-type spirals, and 52% of late-type spirals are barred galaxies. The bars in S0s galaxies are weaker than those in later-type galaxies. The bar length and galaxy size are correlated, being larger bars located in larger galaxies. Neither the bar strength nor bar length correlate with the local galaxy density. On the contrary, the bar properties correlate with the properties of their host galaxies. Galaxies with higher central light concentration host less and weaker bars.Comment: 2 pages, 1 figure to appear in the proceedings of "Formation and Evolution of Galaxy Disks", Rome, October 2007, Eds. J. Funes and E. M. Corsin

    Structural properties of disk galaxies I. The intrinsic ellipticity of bulges

    Full text link
    (Abridged) A variety of formation scenarios was proposed to explain the diversity of properties observed in bulges. Studying their intrinsic shape can help in constraining the dominant mechanism at the epochs of their assembly. The structural parameters of a magnitude-limited sample of 148 unbarred S0--Sb galaxies were derived in order to study the correlations between bulges and disks as well as the probability distribution function (PDF) of the intrinsic equatorial ellipticity of bulges. It is presented a new fitting algorithm (GASP2D) to perform the two-dimensional photometric decomposition of galaxy surface-brightness distribution. This was assumed to be the sum of the contribution of a bulge and disk component characterized by elliptical and concentric isophotes with constant (but possibly different) ellipticity and position angles. Bulge and disk parameters of the sample galaxies were derived from the J-band images which were available in the Two Micron All Sky Survey. The PDF of the equatorial ellipticity of the bulges was derived from the distribution of the observed ellipticities of bulges and misalignments between bulges and disks. Strong correlations between the bulge and disk parameters were found. About 80% of bulges in unbarred lenticular and early-to-intermediate spiral galaxies are not oblate but triaxial ellipsoids. Their mean axial ratio in the equatorial plane is = 0.85. There is not significant dependence of their PDF on morphology, light concentration, and luminosity. The interplay between bulge and disk parameters favors scenarios in which bulges assembled from mergers and/or grew over long times through disk secular evolution. But all these mechanisms have to be tested against the derived distribution of bulge intrinsic ellipticities.Comment: 24 pages, 13 figures, accepted for publication in A&A, corrected proof

    The Jacobi identity for Dirac-like brackets

    Get PDF
    For redundant second-class constraints the Dirac brackets cannot be defined and new brackets must be introduced. We prove here that the Jacobi identity for the new brackets must hold on the surface of the second-class constraints. In order to illustrate our proof we work out explicitly the cases of a fractional spin particle in 2+1 dimensions and the original Brink-Schwarz massless superparticle in D=10 dimensions in a Lorentz covariant constraints separation.Comment: 14 pages, Latex. Final version to be published in Int. J. Mod. Phys.

    Open string with a background B-field as the first order mechanics, noncommutativity and soldering formalism

    Full text link
    To study noncommutativity properties of the open string with constant B-field we construct a mechanical action which reproduces classical dynamics of the string sector under consideration. It allows one to apply the Dirac quantization procedure for constrained systems in a direct and unambiguous way. The mechanical action turns out to be the first order system without taking the strong field limit BB\longrightarrow\infty. In particular, it is true for zero mode of the string coordinate which means that the noncommutativity is intrinsic property of this mechanical system. We describe the arbitrariness in the relation existent between the mechanical and the string variables and show that noncommutativity of the string variables on the boundary can be removed. It is in correspondence with the result of Seiberg and Witten on relation among noncommutative and ordinary Yang-Mills theories. The recently developed soldering formalism helps us to establish a connection between the original open string action and the Polyakov action.Comment: Revtex4, 8 pages. To appear in Physical Review
    corecore