2,712 research outputs found

    Remarks on Screening in a Gauge-Invariant Formalism

    Get PDF
    In this paper we display a direct and physically attractive derivation of the screening contribution to the interaction potential in the Chiral Schwinger model and generalized Maxwell-Chern-Simons gauge theory. It is shown that these results emerge naturally when a correct separation between gauge-invariant and gauge degrees of freedom is made. Explicit expressions for gauge-invariant fields are found.Comment: 13 pages, 1 figure, to appear in PR

    Optimising Spectroscopic and Photometric Galaxy Surveys: Efficient Target Selection and Survey Strategy

    Full text link
    The next generation of spectroscopic surveys will have a wealth of photometric data available for use in target selection. Selecting the best targets is likely to be one of the most important hurdles in making these spectroscopic campaigns as successful as possible. Our ability to measure dark energy depends strongly on the types of targets that we are able to select with a given photometric data set. We show in this paper that we will be able to successfully select the targets needed for the next generation of spectroscopic surveys. We also investigate the details of this selection, including optimisation of instrument design and survey strategy in order to measure dark energy. We use color-color selection as well as neural networks to select the best possible emission line galaxies and luminous red galaxies for a cosmological survey. Using the Fisher matrix formalism we forecast the efficiency of each target selection scenario. We show how the dark energy figures of merit change in each target selection regime as a function of target type, survey time, survey density and other survey parameters. We outline the optimal target selection scenarios and survey strategy choices which will be available to the next generation of spectroscopic surveys.Comment: 16 pages, 22 figures, accepted to MNRAS in dec 201

    A dynamic programming setting for functionally graded thick-walled cylinders

    Get PDF
    Material property variation in non-homogeneous internally pressurized thick-walled cylinders is investigated within the context of dynamic programming theory. The material is assumed to be linear, elastic, isotropic, and functionally graded in the radial direction. Based on the plane stress hypothesis, a state space formulation is given and the optimal control problem is stated and solved by means of Pontryagin's Principle for different objective functionals. Optimal Young's modulus distribution is found to be piecewise linear along the radial domain. A brief digression on the possible existence of switching points is addressed. Finally, a numerical example is performed within a special class of derived optimal solutions, showing promising results in terms of equivalent stress reduction with respect to the most used variations in literature

    A solution to the zero-hamiltonian problem in 2-D gravity

    Get PDF
    The zero-hamiltonian problem, present in reparametrization invariant systems, is solved for the 2-D induced gravity model. Working with methods developed by Henneaux et al. we find systematically the reduced phase-space physics, generated by an {\it effective} hamiltonian obtained after complete gauge fixing.Comment: 5 pages, revte

    PP-Wave Light-Cone Free String Field Theory at Finite Temperature

    Full text link
    In this paper, a real-time formulation of light-cone pp-wave string field theory at finite temperature is presented. This is achieved by developing the thermo field dynamics (TFD) formalism in a second quantized string scenario. The equilibrirum thermodynamic quantities for a pp-wave ideal string gas are derived directly from expectation values on the second quantized string thermal vacuum. Also, we derive the real-time thermal pp-wave closed string propagator. In the flat space limit it is shown that this propagator can be written in terms of Theta functions, exactly as the zero temperature one. At the end, we show how supestrings interactions can be introduced, making this approach suitable to study the BMN dictionary at finite temperature.Comment: 27 pages, revtex

    Enhanced Clustering Routing Protocol for Power-Efficient Gathering in Wireless Sensor Network

    Get PDF
    Wireless sensor network (WSN) is a new and fast advancing technology, which is opening up many opportunities in the field of remote sensing and data monitoring. In spite of the numerous applications of WSN, issues related to determining a suitable and accurate radio model that will foster energy conservation in the network limit the performance of WSN routing protocols. A number of radio models have been proposed to address this issue. However, the underlying assumptions and inaccurate configuration of these radio models make them impractical and often lead to mismanagement of scarce energy and computational resources. This paper addresses this problem by proposing an enhanced radio model that adapts to the frequent changes in the location of the sensor nodes and is robust enough to report reliable data to the base station despite fluctuations due to interference. The impact of incorporating stepwise energy level and specialized data transmission schemes in the proposed radio model is also investigated in this paper. The performance of the proposed radio model is evaluated using OMNET++ and MATLAB and the results obtained is benchmarked against PEGASIS. It is shown by simulation that the novel LEACH-IMP performs better with respect to energy consumption, number of links faults, number of packets received, signal attenuation, and network lifetime

    Quasinormal modes of d-dimensional spherical black holes with a near extreme cosmological constant

    Full text link
    We derive an expression for the quasinormal modes of scalar perturbations in near extreme d-dimensional Schwarzschild-de Sitter and Reissner-Nordstrom-de Sitter black holes. We show that, in the near extreme limit, the dynamics of the scalar field is characterized by a Poschl-Teller effective potential. The results are qualitatively independent of the spacetime dimension and field mass.Comment: 5 pages, REVTeX4, version to be published in Physical Review

    Quasinormal modes for the charged Vaidya metric

    Full text link
    The scalar wave equation is considered in the background of a charged Vaidya metric in double null coordinates (u,v)(u,v) describing a non-stationary charged black hole with varying mass m(v)m(v) and charge q(v)q(v). The resulting time-dependent quasinormal modes are presented and analyzed. We show, in particular, that it is possible to identify some signatures in the quasinormal frequencies from the creation of a naked singularity.Comment: 4 pages. Prepared for the proceedings of the Spanish Relativity meeting (ERE2010), Granada, Spain, September 6-10, 201

    Quantum Electrodynamics in Two-Dimensions at Finite Temperature. Thermofield Bosonization Approach

    Full text link
    The Schwinger model at finite temperature is analyzed using the Thermofield Dynamics formalism. The operator solution due to Lowenstein and Swieca is generalized to the case of finite temperature within the thermofield bosonization approach. The general properties of the statistical-mechanical ensemble averages of observables in the Hilbert subspace of gauge invariant thermal states are discussed. The bare charge and chirality of the Fermi thermofields are screened, giving rise to an infinite number of mutually orthogonal thermal ground states. One consequence of the bare charge and chirality selection rule at finite temperature is that there are innumerably many thermal vacuum states with the same total charge and chirality of the doubled system. The fermion charge and chirality selection rules at finite temperature turn out to imply the existence of a family of thermal theta vacua states parametrized with the same number of parameters as in zero temperature case. We compute the thermal theta-vacuum expectation value of the mass operator and show that the analytic expression of the chiral condensate for any temperature is easily obtained within this approach, as well as, the corresponding high-temperature behavior

    The role of E1-E2 interplay in multiphonon Coulomb excitation

    Get PDF
    In this work we study the problem of a charged particle, bound in a harmonic-oscillator potential, being excited by the Coulomb field from a fast charged projectile. Based on a classical solution to the problem and using the squeezed-state formalism we are able to treat exactly both dipole and quadrupole Coulomb field components. Addressing various transition amplitudes and processes of multiphonon excitation we study different aspects resulting from the interplay between E1 and E2 fields, ranging from classical dynamic polarization effects to questions of quantum interference. We compare exact calculations with approximate methods. Results of this work and the formalism we present can be useful in studies of nuclear reaction physics and in atomic stopping theory.Comment: 10 pages, 6 figure
    • …
    corecore