1,497 research outputs found
Carbon-enhanced metal-poor stars: a window on AGB nucleosynthesis and binary evolution. II. Statistical analysis of a sample of 67 CEMP- stars
Many observed CEMP stars are found in binary systems and show enhanced
abundances of -elements. The origin of the chemical abundances of these
CEMP- stars is believed to be accretion in the past of enriched material
from a primary star in the AGB phase. We investigate the mechanism of mass
transfer and the process of nucleosynthesis in low-metallicity AGB stars by
modelling the binary systems in which the observed CEMP- stars were formed.
For this purpose we compare a sample of CEMP- stars with a grid of
binary stars generated by our binary evolution and nucleosynthesis model. We
classify our sample CEMP- stars in three groups based on the observed
abundance of europium. In CEMP stars the europium-to-iron ratio is more
than ten times higher than in the Sun, whereas it is lower than this threshold
in CEMP stars. No measurement of europium is currently available for
CEMP- stars. On average our models reproduce well the abundances observed
in CEMP- stars, whereas in CEMP- stars and CEMP- stars the
abundances of the light- elements are systematically overpredicted by our
models and in CEMP- stars the abundances of the heavy- elements are
underestimated. In all stars our modelled abundances of sodium overestimate the
observations. This discrepancy is reduced only in models that underestimate the
abundances of most of the -elements. Furthermore, the abundance of lead is
underpredicted in most of our model stars. These results point to the
limitations of our AGB nucleosynthesis model, particularly in the predictions
of the element-to-element ratios. Finally, in our models CEMP- stars are
typically formed in wide systems with periods above 10000 days, while most of
the observed CEMP- stars are found in relatively close orbits with periods
below 5000 days.Comment: 23 pages, 8 figures, accepted for publication on Astronomy &
Astrophysic
Carbon-enhanced metal-poor stars: a window on AGB nucleosynthesis and binary evolution. I. Detailed analysis of 15 binary stars with known orbital periods
AGB stars are responsible for producing a variety of elements, including
carbon, nitrogen, and the heavy elements produced in the slow neutron-capture
process (-elements). There are many uncertainties involved in modelling the
evolution and nucleosynthesis of AGB stars, and this is especially the case at
low metallicity, where most of the stars with high enough masses to enter the
AGB have evolved to become white dwarfs and can no longer be observed. The
stellar population in the Galactic halo is of low mass () and only a few observed stars have evolved beyond the first
giant branch. However, we have evidence that low-metallicity AGB stars in
binary systems have interacted with their low-mass secondary companions in the
past. The aim of this work is to investigate AGB nucleosynthesis at low
metallicity by studying the surface abundances of chemically peculiar very
metal-poor stars of the halo observed in binary systems. To this end we select
a sample of 15 carbon- and -element-enhanced metal-poor (CEMP-) halo
stars that are found in binary systems with measured orbital periods. With our
model of binary evolution and AGB nucleosynthesis, we determine the binary
configuration that best reproduces, at the same time, the observed orbital
period and surface abundances of each star of the sample. The observed periods
provide tight constraints on our model of wind mass transfer in binary stars,
while the comparison with the observed abundances tests our model of AGB
nucleosynthesis.Comment: 18 pages, 20 figures, accepted for publication on A&
VANTAGGI DELL’UTILIZZO DEL SISTEMA DOSIMETRICO OSL IN CASO DI EMERGENZA
VANTAGGI DELL’UTILIZZO DEL SISTEMA DOSIMETRICO OSL IN CASO DI EMERGENZA
S. Abate, F. Campi, L. Garlati, O. Tambussi
Politecnico di Milano, Dipartimento di Energia, via La Masa 34, 20156 Milano
[email protected]
Il sistema dosimetrico per corpo intero OSL (Optically Stimulated Luminescence) è un tipo di dosimetria che si sta sempre più diffondendo in vari paesi. In Europa molti centri di ricerca si sono dotati di un proprio sistema dosimetrico, mentre commercialmente Landauer rappresenta il maggior fornitore di tale servizio dosimetrico, ma anche del sistema stesso (dosimetri e apparecchio di lettura).
Il vantaggio di questo tipo di dosimetro consiste nella semplicità e velocità di lettura e azzeramento, anche se risulta meno affidabile dei film-badge. Inoltre, rispetto ai dosimetri a TL, risultano essere più stabili nel tempo, non dovendo subire cicli termici che ne alterano la struttura cristallina e di conseguenza le loro performance. Questo permette di utilizzare, leggere e azzerare anche il singolo dosimetro e non l’intero lotto di appartenenza.
Questa caratteristica permette di utilizzare il dosimetro a OSL come un dosimetro passivo, ma col vantaggio della lettura indiretta al termine delle operazioni, proprio come per un dosimetro elettronico viene effettuata la lettura diretta su display.
In questo lavoro si vogliono paragonare i vantaggi e gli svantaggi dei sistemi dosimetrici tradizionali (film-badge e TLD) con il sistema OSL. Si presentano i risultati sperimentali delle performance (dipendenza energetica, dosimetrica e angolare) del sistema dosimetrico OSL Inlight con sistema di lettura MicroStar. Infine si presentano i risultati degli irraggiamenti condotti in parallelo presso un centro LAT tra il sistema OSL e i dosimetri elettronici DMC 2000 (Mirion Technologies).
Le caratteristiche di questo dosimetro permettono di concludere che questo tipo di sistema dosimetrico ha degli aspetti positivi per il suo utilizzo in caso di emergenza radiologica senza i costi di una dosimetria con strumentazione attiva
Modelling the observed properties of carbon-enhanced metal-poor stars using binary population synthesis
The stellar population in the Galactic halo is characterised by a large
fraction of CEMP stars. Most CEMP stars are enriched in -elements (CEMP-
stars), and some of these are also enriched in -elements (CEMP- stars).
One formation scenario proposed for CEMP stars invokes wind mass transfer in
the past from a TP-AGB primary star to a less massive companion star which is
presently observed. We generate low-metallicity populations of binary stars to
reproduce the observed CEMP-star fraction. In addition, we aim to constrain our
wind mass-transfer model and investigate under which conditions our synthetic
populations reproduce observed abundance distributions. We compare the CEMP
fractions and the abundance distributions determined from our synthetic
populations with observations. Several physical parameters of the binary
stellar population of the halo are uncertain, e.g. the initial mass function,
the mass-ratio and orbital-period distributions, and the binary fraction. We
vary the assumptions in our model about these parameters, as well as the wind
mass-transfer process, and study the consequent variations of our synthetic
CEMP population. The CEMP fractions calculated in our synthetic populations
vary between 7% and 17%, a range consistent with the CEMP fractions among very
metal-poor stars recently derived from the SDSS/SEGUE data sample. The results
of our comparison between the modelled and observed abundance distributions are
different for CEMP- stars and for CEMP- stars. For the latter, our
simulations qualitatively reproduce the observed distributions of C, Na, Sr,
Ba, Eu, and Pb. Contrarily, for CEMP- stars our model cannot reproduce the
large abundances of neutron-rich elements such as Ba, Eu, and Pb. This result
is consistent with previous studies, and suggests that CEMP- stars
experienced a different nucleosynthesis history to CEMP- stars.Comment: 17 pages, 11 figures, accepted for publication on Astronomy and
Astrophysic
Entanglement in the interaction between two quantum oscillator systems
The fundamental quantum dynamics of two interacting oscillator systems are
studied in two different scenarios. In one case, both oscillators are assumed
to be linear, whereas in the second case, one oscillator is linear and the
other is a non-linear, angular-momentum oscillator; the second case is, of
course, more complex in terms of energy transfer and dynamics. These two
scenarios have been the subject of much interest over the years, especially in
developing an understanding of modern concepts in quantum optics and quantum
electronics. In this work, however, these two scenarios are utilized to
consider and discuss the salient features of quantum behaviors resulting from
the interactive nature of the two oscillators, i.e., coherence, entanglement,
spontaneous emission, etc., and to apply a measure of entanglement in analyzing
the nature of the interacting systems. ... For the coupled linear and
angular-momentum oscillator system in the fully quantum-mechanical description,
we consider special examples of two, three, four-level angular momentum
systems, demonstrating the explicit appearances of entanglement. We also show
that this entanglement persists even as the coupled angular momentum oscillator
is taken to the limit of a large number of levels, a limit which would go over
to the classical picture for an uncoupled angular momentum oscillator
3D Face Reconstruction from Light Field Images: A Model-free Approach
Reconstructing 3D facial geometry from a single RGB image has recently
instigated wide research interest. However, it is still an ill-posed problem
and most methods rely on prior models hence undermining the accuracy of the
recovered 3D faces. In this paper, we exploit the Epipolar Plane Images (EPI)
obtained from light field cameras and learn CNN models that recover horizontal
and vertical 3D facial curves from the respective horizontal and vertical EPIs.
Our 3D face reconstruction network (FaceLFnet) comprises a densely connected
architecture to learn accurate 3D facial curves from low resolution EPIs. To
train the proposed FaceLFnets from scratch, we synthesize photo-realistic light
field images from 3D facial scans. The curve by curve 3D face estimation
approach allows the networks to learn from only 14K images of 80 identities,
which still comprises over 11 Million EPIs/curves. The estimated facial curves
are merged into a single pointcloud to which a surface is fitted to get the
final 3D face. Our method is model-free, requires only a few training samples
to learn FaceLFnet and can reconstruct 3D faces with high accuracy from single
light field images under varying poses, expressions and lighting conditions.
Comparison on the BU-3DFE and BU-4DFE datasets show that our method reduces
reconstruction errors by over 20% compared to recent state of the art
Syntactic Markovian Bisimulation for Chemical Reaction Networks
In chemical reaction networks (CRNs) with stochastic semantics based on
continuous-time Markov chains (CTMCs), the typically large populations of
species cause combinatorially large state spaces. This makes the analysis very
difficult in practice and represents the major bottleneck for the applicability
of minimization techniques based, for instance, on lumpability. In this paper
we present syntactic Markovian bisimulation (SMB), a notion of bisimulation
developed in the Larsen-Skou style of probabilistic bisimulation, defined over
the structure of a CRN rather than over its underlying CTMC. SMB identifies a
lumpable partition of the CTMC state space a priori, in the sense that it is an
equivalence relation over species implying that two CTMC states are lumpable
when they are invariant with respect to the total population of species within
the same equivalence class. We develop an efficient partition-refinement
algorithm which computes the largest SMB of a CRN in polynomial time in the
number of species and reactions. We also provide an algorithm for obtaining a
quotient network from an SMB that induces the lumped CTMC directly, thus
avoiding the generation of the state space of the original CRN altogether. In
practice, we show that SMB allows significant reductions in a number of models
from the literature. Finally, we study SMB with respect to the deterministic
semantics of CRNs based on ordinary differential equations (ODEs), where each
equation gives the time-course evolution of the concentration of a species. SMB
implies forward CRN bisimulation, a recently developed behavioral notion of
equivalence for the ODE semantics, in an analogous sense: it yields a smaller
ODE system that keeps track of the sums of the solutions for equivalent
species.Comment: Extended version (with proofs), of the corresponding paper published
at KimFest 2017 (http://kimfest.cs.aau.dk/
Positivity of relative canonical bundles and applications
Given a family of canonically polarized manifolds, the
unique K\"ahler-Einstein metrics on the fibers induce a hermitian metric on the
relative canonical bundle . We use a global elliptic
equation to show that this metric is strictly positive on , unless
the family is infinitesimally trivial.
For degenerating families we show that the curvature form on the total space
can be extended as a (semi-)positive closed current. By fiber integration it
follows that the generalized Weil-Petersson form on the base possesses an
extension as a positive current. We prove an extension theorem for hermitian
line bundles, whose curvature forms have this property. This theorem can be
applied to a determinant line bundle associated to the relative canonical
bundle on the total space. As an application the quasi-projectivity of the
moduli space of canonically polarized varieties
follows.
The direct images , , carry natural hermitian metrics. We prove an
explicit formula for the curvature tensor of these direct images. We apply it
to the morphisms that are induced by the Kodaira-Spencer map and obtain a differential
geometric proof for hyperbolicity properties of .Comment: Supercedes arXiv:0808.3259v4 and arXiv:1002.4858v2. To appear in
Invent. mat
Chord distribution functions of three-dimensional random media: Approximate first-passage times of Gaussian processes
The main result of this paper is a semi-analytic approximation for the chord
distribution functions of three-dimensional models of microstructure derived
from Gaussian random fields. In the simplest case the chord functions are
equivalent to a standard first-passage time problem, i.e., the probability
density governing the time taken by a Gaussian random process to first exceed a
threshold. We obtain an approximation based on the assumption that successive
chords are independent. The result is a generalization of the independent
interval approximation recently used to determine the exponent of persistence
time decay in coarsening. The approximation is easily extended to more general
models based on the intersection and union sets of models generated from the
iso-surfaces of random fields. The chord distribution functions play an
important role in the characterization of random composite and porous
materials. Our results are compared with experimental data obtained from a
three-dimensional image of a porous Fontainebleau sandstone and a
two-dimensional image of a tungsten-silver composite alloy.Comment: 12 pages, 11 figures. Submitted to Phys. Rev.
Recommended from our members
Malaria prevalence and mosquito net coverage in Oromia and SNNPR regions of Ethiopia.
RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.BACKGROUND: Malaria transmission in Ethiopia is unstable and seasonal, with the majority of the country's population living in malaria-prone areas. Results from DHS 2005 indicate that the coverage of key malaria interventions was low. The government of Ethiopia has set the national goal of full population coverage with a mean of 2 long-lasting insecticidal nets (LLINs) per household through distribution of about 20 million LLIN by the end of 2007. The aim of this study was to generate baseline information on malaria parasite prevalence and coverage of key malaria control interventions in Oromia and SNNPR and to relate the prevalence survey findings to routine surveillance data just before further mass distribution of LLINs. METHODS: A 64 cluster malaria survey was conducted in January 2007 using a multi-stage cluster random sampling design. Using Malaria Indicator Survey Household Questionnaire modified for the local conditions as well as peripheral blood microscopy and rapid diagnostic tests, the survey assessed net ownership and use and malaria parasite prevalence in Oromia and SNNPR regions of Ethiopia. Routine surveillance data on malaria for the survey time period was obtained for comparison with prevalence survey results. RESULTS: Overall, 47.5% (95% confidence interval (CI) 33.5-61.9%) of households had at least one net, and 35.1% (95% CI 23.1-49.4%) had at least one LLIN. There was no difference in net ownership or net utilization between the regions. Malaria parasite prevalence was 2.4% (95% CI 1.6-3.5%) overall, but differed markedly between the two regions: Oromia, 0.9% (95% CI 0.5-1.6); SNNPR, 5.4% (95% CI 3.4-8.5), p < 0.001. This difference between the two regions was also reflected in the routine surveillance data. CONCLUSION: Household net ownership exhibited nearly ten-fold increase compared to the results of Demographic and Health Survey 2005 when fewer than 5% of households in these two regions owned any nets. The results of the survey as well as the routine surveillance data demonstrated that malaria continues to be a significant public health challenge in these regions-and more prevalent in SNNPR than in Oromia
- …
