100 research outputs found
Reducing cell intrinsic immunity to mRNA vaccine alters adaptive immune responses in mice
The response to mRNA vaccines needs to be sufficient for immune cell activation and recruitment, but moderate enough to ensure efficacious antigen expression. The choice of the cap structure and use of N1-methylpseudouridine (m1Ψ) instead of uridine, which have been shown to reduce RNA sensing by the cellular innate immune system, has led to improved efficacy of mRNA vaccine platforms. Understanding how RNA modifications influence the cell intrinsic immune response may help in the development of more effective mRNA vaccines. In the current study, we compared mRNA vaccines in mice against influenza virus using three different mRNA formats: uridine-containing mRNA (D1-uRNA), m1Ψ-modified mRNA (D1-modRNA), and D1-modRNA with a cap1 structure (cC1-modRNA). D1-uRNA vaccine induced a significantly different gene expression profile to the modified mRNA vaccines, with an up-regulation of Stat1 and RnaseL, and increased systemic inflammation. This result correlated with significantly reduced antigen-specific antibody responses and reduced protection against influenza virus infection compared with D1-modRNA and cC1-modRNA. Incorporation of m1Ψ alone without cap1 improved antibodies, but both modifications were required for the optimum response. Therefore, the incorporation of m1Ψ and cap1 alters protective immunity from mRNA vaccines by altering the innate immune response to the vaccine material
Mapping Patent Classifications: Portfolio and Statistical Analysis, and the Comparison of Strengths and Weaknesses
The Cooperative Patent Classifications (CPC) jointly developed by the
European and US Patent Offices provide a new basis for mapping and portfolio
analysis. This update provides an occasion for rethinking the parameter
choices. The new maps are significantly different from previous ones, although
this may not always be obvious on visual inspection. Since these maps are
statistical constructs based on index terms, their quality--as different from
utility--can only be controlled discursively. We provide nested maps online and
a routine for portfolio overlays and further statistical analysis. We add a new
tool for "difference maps" which is illustrated by comparing the portfolios of
patents granted to Novartis and MSD in 2016.Comment: Scientometrics 112(3) (2017) 1573-1591;
http://link.springer.com/article/10.1007/s11192-017-2449-
The Herts and Minds study: Evaluating the effectiveness of Mentalization-Based Treatment (MBT) as an intervention for children in foster care with emotional and/or behavioural problems: a phase II, feasibility, randomised controlled trial.
Trial registration at https://doi.org/10.1186/ISRCTN90349442 © The Authors 2017. Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Nick Midgley, Sarah Jane Besser, Helen Dye, Pasco Fearon, tim Gale, Kiri Jefferies-Sewell, Karen Irvine, Joyce Robinson, Solange Wyatt, David Wellsted and Sally Wood, 'The Herts and minds study: evaluating the effectiveness of mentalization-based treatment (MBT) as an intervention for children in foster care with emotional and/or behavioural problems: a phase II, feasibility, randomised controlled trial', Pilot and Feasibility Studies, Vol. 3(12, February 2017. The published version is available online at doi: 10.1186/s40814-017-0127-xBackground A significant proportion of children in the social care system in England present with mental health problems, with the majority experiencing some form of emotional and behavioural difficulties. The most effective treatments for these children are currently unknown, partly due to a lack of robust, controlled studies. Researchers have identified a number of obstacles to conducting well-designed research with this population, making the need to test the feasibility of a randomised controlled trial especially important. Methods/design This protocol outlines a two-arm, randomised control feasibility trial to explore the acceptability and credibility of mentalization-based treatment (MBT) as a treatment for reducing emotional and behavioural difficulties in looked after children and to test the possibility of addressing a number of methodological challenges to conducting high-quality research with this population. MBT is a relatively new intervention which, in the adaptation of the model tested here, includes many of the features of therapy identified in NICE guidelines as necessary to support children in care. The two arms are MBT and usual clinical care (UCC). The study will take place in Hertfordshire Partnership University NHS Foundation Trust with follow-up at 12 and 24 weeks. Discussion This study will aim to ascertain whether it is worthwhile and feasible to progress to testing the intervention in a full-scale definitive randomised controlled trial (RCT). This study therefore has the potential to improve our understanding of the obstacles to conducting high-quality research with this very vulnerable population, and in the medium term, could help to improve the stability of foster placements and the emotional well-being of children in care. Trial registration ISRCTN90349442Peer reviewe
Blood neutrophil activation markers in severe asthma: lack of inhibition by prednisolone therapy
BACKGROUND: Neutrophils are increased in the airways and in induced sputum of severe asthma patients. We determined the expression of activation markers from circulating neutrophils in severe asthma, and their supressibility by corticosteroids. METHODS: We compared blood neutrophils from mild, moderate-to-severe and severe steroid-dependent asthma, and non-asthmatics (n = 10 each). We examined the effect of adding or increasing oral prednisolone (30 mg/day;1 week). RESULTS: Flow cytometric expression of CD35 and CD11b, but not of CD62L or CD18, was increased in severe asthma. F-met-leu-phe increased CD11b, CD35 and CD18 and decreased CD62L expression in all groups, with a greater CD35 increase in severe asthma. In severe steroid-dependent asthma, an increase in prednisolone dose had no effect on neutrophil markers particularly CD62L, but reduced CD11b and CD62L on eosinophils. Phorbol myristate acetate-stimulated oxidative burst and IL-8 release by IL-1β, lipopolysaccharide and GM-CSF in whole blood from mild but not severe asthmatics were inhibited after prednisolone. There were no differences in myeloperoxidase or neutrophil elastase release from purified neutrophils. CONCLUSION: Because blood neutrophils in severe asthma are activated and are not inhibited by oral corticosteroids, they may be important in the pathogenesis of severe asthma
Identification and Characterization of the Host Protein DNAJC14 as a Broadly Active Flavivirus Replication Modulator
Viruses in the Flavivirus genus of the Flaviviridae family are arthropod-transmitted and contribute to staggering numbers of human infections and significant deaths annually across the globe. To identify cellular factors with antiviral activity against flaviviruses, we screened a cDNA library using an iterative approach. We identified a mammalian Hsp40 chaperone protein (DNAJC14) that when overexpressed was able to mediate protection from yellow fever virus (YFV)-induced cell death. Further studies revealed that DNAJC14 inhibits YFV at the step of viral RNA replication. Since replication of bovine viral diarrhea virus (BVDV), a member of the related Pestivirus genus, is also known to be modulated by DNAJC14, we tested the effect of this host factor on diverse Flaviviridae family members. Flaviviruses, including the pathogenic Asibi strain of YFV, Kunjin, and tick-borne Langat virus, as well as a Hepacivirus, hepatitis C virus (HCV), all were inhibited by overexpression of DNAJC14. Mutagenesis showed that both the J-domain and the C-terminal domain, which mediates self-interaction, are required for anti-YFV activity. We found that DNAJC14 does not block YFV nor HCV NS2-3 cleavage, and using non-inhibitory mutants demonstrate that DNAJC14 is recruited to YFV replication complexes. Immunofluorescence analysis demonstrated that endogenous DNAJC14 rearranges during infection and is found in replication complexes identified by dsRNA staining. Interestingly, silencing of endogenous DNAJC14 results in impaired YFV replication suggesting a requirement for DNAJC14 in YFV replication complex assembly. Finally, the antiviral activity of overexpressed DNAJC14 occurs in a time- and dose-dependent manner. DNAJC14 overexpression may disrupt the proper stoichiometry resulting in inhibition, which can be overcome upon restoration of the optimal ratios due to the accumulation of viral nonstructural proteins. Our findings, together with previously published work, suggest that the members of the Flaviviridae family have evolved in unique and important ways to interact with this host Hsp40 chaperone molecule
Overexpression of endothelial nitric oxide synthase suppresses features of allergic asthma in mice
BACKGROUND: Asthma is associated with airway hyperresponsiveness and enhanced T-cell number/activity on one hand and increased levels of exhaled nitric oxide (NO) with expression of inducible NO synthase (iNOS) on the other hand. These findings are in paradox, as NO also relaxes airway smooth muscle and has immunosuppressive properties. The exact role of the endothelial NOS (eNOS) isoform in asthma is still unknown. We hypothezised that a delicate regulation in the production of NO and its bioactive forms by eNOS might be the key to the pathogenesis of asthma. METHODS: The contribution of eNOS on the development of asthmatic features was examined. We used transgenic mice that overexpress eNOS and measured characteristic features of allergic asthma after sensitisation and challenge of these mice with the allergen ovalbumin. RESULTS: eNOS overexpression resulted in both increased eNOS activity and NO production in the lungs. Isolated thoracic lymph nodes cells from eNOS overexpressing mice that have been sensitized and challenged with ovalbumin produced significantly less of the cytokines IFN-Îł, IL-5 and IL-10. No difference in serum IgE levels could be found. Further, there was a 50% reduction in the number of lymphocytes and eosinophils in the lung lavage fluid of these animals. Finally, airway hyperresponsiveness to methacholine was abolished in eNOS overexpressing mice. CONCLUSION: These findings demonstrate that eNOS overexpression attenuates both airway inflammation and airway hyperresponsiveness in a model of allergic asthma. We suggest that a delicate balance in the production of bioactive forms of NO derived from eNOS might be essential in the pathophysiology of asthma
Resistance to MPTP-Neurotoxicity in α-Synuclein Knockout Mice Is Complemented by Human α-Synuclein and Associated with Increased β-Synuclein and Akt Activation
Genetic and biochemical abnormalities of α-synuclein are associated with the pathogenesis of Parkinson's disease. In the present study we investigated the in vivo interaction of mouse and human α-synuclein with the potent parkinsonian neurotoxin, MPTP. We find that while lack of mouse α-synuclein in mice is associated with reduced vulnerability to MPTP, increased levels of human α-synuclein expression is not associated with obvious changes in the vulnerability of dopaminergic neurons to MPTP. However, expressing human α-synuclein variants (human wild type or A53T) in the α-synuclein null mice completely restores the vulnerability of nigral dopaminergic neurons to MPTP. These results indicate that human α-synuclein can functionally replace mouse α-synuclein in regard to vulnerability of dopaminergic neurons to MPTP-toxicity. Significantly, α-synuclein null mice and wild type mice were equally sensitive to neurodegeneration induced by 2′NH2-MPTP, a MPTP analog that is selective for serotoninergic and noradrenergic neurons. These results suggest that effects of α-synuclein on MPTP like compounds are selective for nigral dopaminergic neurons. Immunoblot analysis of β-synuclein and Akt levels in the mice reveals selective increases in β-synuclein and phosphorylated Akt levels in ventral midbrain, but not in other brain regions, of α-synuclein null mice, implicating the α-synuclein-level dependent regulation of β-synuclein expression in modulation of MPTP-toxicity by α-synuclein. Together these findings provide new mechanistic insights on the role α-synuclein in modulating neurodegenerative phenotypes by regulation of Akt-mediated cell survival signaling in vivo
Specific ion channels contribute to key elements of pathology during secondary degeneration following neurotrauma
Background: Following partial injury to the central nervous system, cells beyond the initial injury site undergo secondary degeneration, exacerbating loss of neurons, compact myelin and function. Changes in Ca 2+ flux are associated with metabolic and structural changes, but it is not yet clear how flux through specific ion channels contributes to the various pathologies. Here, partial optic nerve transection in adult female rats was used to model secondary degeneration. Treatment with combinations of three ion channel inhibitors was used as a tool to investigate which elements of oxidative and structural damage related to long term functional outcomes. The inhibitors employed were the voltage gated Ca 2+ channel inhibitor Lomerizine (Lom), the Ca 2+ permeable AMPA receptor inhibitor YM872 and the P2X 7 receptor inhibitor oxATP. Results: Following partial optic nerve transection, hyper-phosphorylation of Tau and acetylated tubulin immunoreactivity were increased, and Nogo-A immunoreactivity was decreased, indicating that axonal changes occurred acutely. All combinations of ion channel inhibitors reduced hyper-phosphorylation of Tau and increased Nogo-A immunoreactivity at day 3 after injury. However, only Lom/oxATP or all three inhibitors in combination significantly reduced acetylated tubulin immunoreactivity. Most combinations of ion channel inhibitors were effective in restoring the lengths of the paranode and the paranodal gap, indicative of the length of the node of Ranvier, following injury. However, only all three inhibitors in combination restored to normal Ankyrin G length at the node of Ranvier. Similarly, HNE immunoreactivity and loss of oligodendrocyte precursor cells were only limited by treatment with all three ion channel inhibitors in combination. Conclusions: Data indicate that inhibiting any of a range of ion channels preserves certain elements of axon and node structure and limits some oxidative damage following injury, whereas ionic flux through all three channels must be inhibited to prevent lipid peroxidation and preserve Ankyrin G distribution and OPCs
- …