17 research outputs found
A Synthesis of Tagging Studies Examining the Behaviour and Survival of Anadromous Salmonids in Marine Environments
This paper synthesizes tagging studies to highlight the current state of knowledge concerning the behaviour and survival of anadromous salmonids in the marine environment. Scientific literature was reviewed to quantify the number and type of studies that have investigated behaviour and survival of anadromous forms of Pacific salmon (Oncorhynchus spp.), Atlantic salmon (Salmo salar), brown trout (Salmo trutta), steelhead (Oncorhynchus mykiss), and cutthroat trout (Oncorhynchus clarkii). We examined three categories of tags including electronic (e.g. acoustic, radio, archival), passive (e.g. external marks, Carlin, coded wire, passive integrated transponder [PIT]), and biological (e.g. otolith, genetic, scale, parasites). Based on 207 papers, survival rates and behaviour in marine environments were found to be extremely variable spatially and temporally, with some of the most influential factors being temperature, population, physiological state, and fish size. Salmonids at all life stages were consistently found to swim at an average speed of approximately one body length per second, which likely corresponds with the speed at which transport costs are minimal. We found that there is relatively little research conducted on open-ocean migrating salmonids, and some species (e.g. masu [O. masou] and amago [O. rhodurus]) are underrepresented in the literature. The most common forms of tagging used across life stages were various forms of external tags, coded wire tags, and acoustic tags, however, the majority of studies did not measure tagging/handling effects on the fish, tag loss/failure, or tag detection probabilities when estimating survival. Through the interdisciplinary application of existing and novel technologies, future research examining the behaviour and survival of anadromous salmonids could incorporate important drivers such as oceanography, tagging/handling effects, predation, and physiology
Evaluation of surgery procedures for tagging eel Anguilla anguilla (L.) with biotelemetry transmitters
Externally attached telemetry transmitters are unsuitable to tag yellow eels Anguilla anguilla (L.), in streams where they exhibit cryptic life habits and hide in narrow cavities between rocks. We evaluated the adequacy of surgical implantation and closing procedures for tagging eels with biotelemetry transmitters. Epoxy dummy transmitters (18_8 mm, 1.6–1.7 g) were implanted in eels anaesthetised with 2-phenoxy-ethanol (0.9 ml l−1), through a 20mm mid ventral incision made in the posterior quarter of their body cavity. The incision was either left open, or closed in different ways: stitches (absorbable or non absorbable suture material) or commercial-grade cyanoacrilate adhesive (LoctiteTM). Fish were stocked in a 4 m2 flow through tank (15–17 _C), controlled daily for mortality and weekly for evaluating the healing process.
No transmitter was expelled over a 12-week period, even in eels with unclosed incisions, of which 50% healed within 28 days (t50). Regardless of the nature of the filament, suturing induced skin and muscle necrosis, caused significantly higher mortality rates (60% after 10 weeks) and paradoxically slowed down the healing rate (40 and 45 d, respectively). Cyanoacrilate suppressed the inflammatory response and granted higher survival rate (90%), but did not permit to speed up the closing process (t50 = 52 d), as eels actively bit and removed the adhesive within hours. This behaviour was suppressed when we applied a freshly cut fragment of the eel dorsal fin as a biological bandage over the drying cyanoacrilate. The adhesive remained in place for one to two days and permitted to substantially increase the healing rate (t50 = 15 d). These results substantiate the efficiency of surgery techniques for tagging eels with radio transmitters, at least for units of small weight and bulk
Seasonal variations in time and space utilization by radio-tagged yellow eels Anguilla anguilla (L.) in a small stream
Seven yellow eels (572–643 mm, 318–592 g) Anguilla anguilla (L.) were tagged with surgically implanted radio transmitters (activity circuit, 1.6–1.7 g) and tracked in the Awirs stream, a small (width <5 m, depth from 0.1 to 1.2 m), densely populated (ca. 250 kg of eel ha−1) tributary of the Belgian River Meuse. The eels were positioned daily from late April to mid-August, and their diel activity was studied during twenty four 24-h cycles. During day-time, the eels were resting in rootwads or in crevices inside stone walls or in crevices in between rocks. They became more active in the late afternoon but generally did not leave their residence before sunset, except under overcast weather. Activity peaked during the first part of the night then progressively vanished, and always ended before sunrise. The area exploited during night-time never extended over more than 40 m2, except when the eel changed its residence. The intensity and timing of nocturnal activity and the extent of the daily activity area were dependent on water temperature (respectively P<0.0001, P<0.05 and P<0.0005), with eels showing little or no activity when the diurnal temperature did not exceed 13 _C. Eels showed higher agitation under full moon and maintained their activity later in the night (P<0.05). The eels showed restricted mobility, and occupied small stream areas (from 0.01 to 0.10 ha) in a non sequential mode, except for two fish which were displaced to the River Meuse by a spate in early June and were never recovered. The length and frequency of net daily journeys were higher (P = 0.005) at water temperatures above 16 _C in late May and June, which also corresponded to the period of immigration of eels from the River Meuse. This study thus shows that large yellow eels may adopt a highly sedentary lifestyle in a continental, fast flowing and densely populated environment, even at periods of the year when these stages usually show upstream migrations
