10 research outputs found

    TrpC3 Regulates Hypertrophy-Associated Gene Expression without Affecting Myocyte Beating or Cell Size

    Get PDF
    Pathological cardiac hypertrophy is associated with an increased risk of heart failure and cardiovascular mortality. Calcium (Ca2+) -regulated gene expression is essential for the induction of hypertrophy, but it is not known how myocytes distinguish between the Ca2+ signals that regulate contraction and those that lead to cardiac hypertrophy. We used in vitro neonatal rat ventricular myocytes to perform an RNA interference (RNAi) screen for ion channels that mediate Ca2+-dependent gene expression in response to hypertrophic stimuli. We identified several ion channels that are linked to hypertrophic gene expression, including transient receptor potential C3 (TrpC3). RNAi-mediated knockdown of TrpC3 decreases expression of hypertrophy-associated genes such as the A- and B-type natriuretic peptides (ANP and BNP) in response to numerous hypertrophic stimuli, while TrpC3 overexpression increases BNP expression. Furthermore, stimuli that induce hypertrophy dramatically increase TrpC3 mRNA levels. Importantly, whereas TrpC3-knockdown strongly reduces gene expression associated with hypertrophy, it has a negligible effect on cell size and on myocyte beating. These results suggest that Ca2+ influx through TrpC3 channels increases transcription of genes associated with hypertrophy but does not regulate the signaling pathways that control cell size or contraction. Thus TrpC3 may represent an important therapeutic target for the treatment of cardiac hypertrophy and heart failure

    Drug-Induced Renal Damage in Preterm Neonates: State of the Art and Methods for Early Detection

    Get PDF
    Only a small fraction of drugs widely used in neonatal intensive care units (NICU) are specifically authorized for this population. Even if unlicensed or off-label use is necessary, it is associated with increased adverse drug reactions, which must be carefully weighed against expected benefits. In particular, renal damage is frequent among preterm babies, and is considered a predisposing factor for the development of chronic kidney disease in adulthood. Apart from specific conditions affecting premature neonates (e.g. respiratory distress syndrome, perinatal asphyxia), drugs play an important role in impairing renal function because of well-known nephrotoxicity and/or interaction with renal developmental factors. From a review of the available studies on drug use in NICU patients, we identified and described the most commonly administered drugs that are correlated to renal damage. Early detection of kidney injury is becoming an essential aspects for clinicians because of the limited number of biomarkers applicable in the neonatal population. Postnatal changes of biochemical processes that influence pharmacokinetic and pharmacodynamic aspects need to be further investigated in order to better understand the mechanisms of drug toxicity in this population. The most promising strategies for dose adjustment and therapeutic schemes are discussed. The purpose of this review was to describe current knowledge on drug use among premature babies and their implication in kidney injury development, as well as to highlight available strategies for early detection of renal damage

    Cellular and Molecular Aspects of the A-Type Natriuretic Peptide

    No full text

    Inhibitors of the Release of Anaphylactic Mediators

    No full text
    corecore