130 research outputs found

    Hydrokinetic Turbine Effects on Fish Swimming Behaviour

    Get PDF
    Hydrokinetic turbines, targeting the kinetic energy of fast-flowing currents, are under development with some turbines already deployed at ocean sites around the world. It remains virtually unknown as to how these technologies affect fish, and rotor collisions have been postulated as a major concern. In this study the effects of a vertical axis hydrokinetic rotor with rotational speeds up to 70 rpm were tested on the swimming patterns of naturally occurring fish in a subtropical tidal channel. Fish movements were recorded with and without the rotor in place. Results showed that no fish collided with the rotor and only a few specimens passed through rotor blades. Overall, fish reduced their movements through the area when the rotor was present. This deterrent effect on fish increased with current speed. Fish that passed the rotor avoided the near-field, about 0.3 m from the rotor for benthic reef fish. Large predatory fish were particularly cautious of the rotor and never moved closer than 1.7 m in current speeds above 0.6 ms-1. The effects of the rotor differed among taxa and feeding guilds and it is suggested that fish boldness and body shape influenced responses. In conclusion, the tested hydrokinetic turbine rotor proved non-hazardous to fish during the investigated conditions. However, the results indicate that arrays comprising multiple turbines may restrict fish movements, particularly for large species, with possible effects on habitat connectivity if migration routes are exploited. Arrays of the investigated turbine type and comparable systems should therefore be designed with gaps of several metres width to allow large fish to pass through. In combination with further research the insights from this study can be used for guiding the design of hydrokinetic turbine arrays where needed, so preventing ecological impacts

    Monitoring an Alien Invasion: DNA Barcoding and the Identification of Lionfish and Their Prey on Coral Reefs of the Mexican Caribbean

    Get PDF
    BACKGROUND: In the Mexican Caribbean, the exotic lionfish Pterois volitans has become a species of great concern because of their predatory habits and rapid expansion onto the Mesoamerican coral reef, the second largest continuous reef system in the world. This is the first report of DNA identification of stomach contents of lionfish using the barcode of life reference database (BOLD). METHODOLOGY/PRINCIPAL FINDINGS: We confirm with barcoding that only Pterois volitans is apparently present in the Mexican Caribbean. We analyzed the stomach contents of 157 specimens of P. volitans from various locations in the region. Based on DNA matches in the Barcode of Life Database (BOLD) and GenBank, we identified fishes from five orders, 14 families, 22 genera and 34 species in the stomach contents. The families with the most species represented were Gobiidae and Apogonidae. Some prey taxa are commercially important species. Seven species were new records for the Mexican Caribbean: Apogon mosavi, Coryphopterus venezuelae, C. thrix, C. tortugae, Lythrypnus minimus, Starksia langi and S. ocellata. DNA matches, as well as the presence of intact lionfish in the stomach contents, indicate some degree of cannibalism, a behavior confirmed in this species by the first time. We obtained 45 distinct crustacean prey sequences, from which only 20 taxa could be identified from the BOLD and GenBank databases. The matches were primarily to Decapoda but only a single taxon could be identified to the species level, Euphausia americana. CONCLUSIONS/SIGNIFICANCE: This technique proved to be an efficient and useful method, especially since prey species could be identified from partially-digested remains. The primary limitation is the lack of comprehensive coverage of potential prey species in the region in the BOLD and GenBank databases, especially among invertebrates

    Multiple Invasions into Freshwater by Pufferfishes (Teleostei: Tetraodontidae): A Mitogenomic Perspective

    Get PDF
    Pufferfishes of the Family Tetraodontidae are the most speciose group in the Order Tetraodontiformes and mainly inhabit coastal waters along continents. Although no members of other tetraodontiform families have fully discarded their marine lives, approximately 30 tetraodontid species spend their entire lives in freshwaters in disjunct tropical regions of South America, Central Africa, and Southeast Asia. To investigate the interrelationships of tetraodontid pufferfishes and thereby elucidate the evolutionary origins of their freshwater habitats, we performed phylogenetic analysis based on whole mitochondrial genome sequences from 50 tetraodontid species and closely related species (including 31 newly determined sequences). The resulting phylogenies reveal that the family is composed of four major lineages and that freshwater species from the different continents are independently nested in two of the four lineages. A monophyletic origin of the use of freshwater habitats was statistically rejected, and ancestral habitat reconstruction on the resulting tree demonstrates that tetraodontids independently entered freshwater habitats in different continents at least three times. Relaxed molecular-clock Bayesian divergence time estimation suggests that the timing of these invasions differs between continents, occurring at 0–10 million years ago (MA) in South America, 17–38 MA in Central Africa, and 48–78 MA in Southeast Asia. These timings are congruent with geological events that could facilitate adaptation to freshwater habitats in each continent
    • …
    corecore