13 research outputs found
Evidence for Habitual and Goal-Directed Behavior Following Devaluation of Cocaine: A Multifaceted Interpretation of Relapse
BACKGROUND:Cocaine addiction is characterized as a chronically relapsing disorder. It is believed that cues present during self-administration become learned and increase the probability that relapse will occur when they are confronted during abstinence. However, the way in which relapse-inducing cues are interpreted by the user has remained elusive. Recent theories of addiction posit that relapse-inducing cues cause relapse habitually or automatically, bypassing processing information related to the consequences of relapse. Alternatively, other theories hypothesize that relapse-inducing cues produce an expectation of the drug's consequences, designated as goal-directed relapse. Discrete discriminative stimuli signaling the availability of cocaine produce robust cue-induced responding after thirty days of abstinence. However, it is not known whether cue-induced responding is a goal-directed action or habit. METHODOLOGY/PRINCIPAL FINDINGS:We tested whether cue-induced responding is a goal-directed action or habit by explicitly pairing or unpairing cocaine with LiCl-induced sickness (n = 7/group), thereby decreasing or not altering the value of cocaine, respectively. Following thirty days of abstinence, no difference in responding between groups was found when animals were reintroduced to the self-administration environment alone, indicating habitual behavior. However, upon discriminative stimulus presentations, cocaine-sickness paired animals exhibited decreased cue-induced responding relative to unpaired controls, indicating goal-directed behavior. In spite of the difference between groups revealed during abstinent testing, no differences were found between groups when animals were under the influence of cocaine. CONCLUSIONS/SIGNIFICANCE:Unexpectedly, both habitual and goal-directed responding occurred during abstinent testing. Furthermore, habitual or goal-directed responding may have been induced by cues that differed in their correlation with the cocaine infusion. Non-discriminative stimulus cues were weak correlates of the infusion, which failed to evoke a representation of the value of cocaine and led to habitual behavior. However, the discriminative stimulus-nearly perfectly correlated with the infusion-likely evoked a representation of the value of the infusion and led to goal-directed behavior. These data indicate that abstinent cue-induced responding is multifaceted, dynamically engendering habitual or goal-directed behavior. Moreover, since goal-directed behavior terminated habitual behavior during testing, therapeutic approaches aimed at reducing the perceived value of cocaine in addicted individuals may reduce the capacity of cues to induce relapse
Neuroprotection by adenosine in the brain: From A1 receptor activation to A2A receptor blockade
Adenosine is a neuromodulator that operates via the most abundant inhibitory adenosine A1 receptors (A1Rs) and the less abundant, but widespread, facilitatory A2ARs. It is commonly assumed that A1Rs play a key role in neuroprotection since they decrease glutamate release and hyperpolarize neurons. In fact, A1R activation at the onset of neuronal injury attenuates brain damage, whereas its blockade exacerbates damage in adult animals. However, there is a down-regulation of central A1Rs in chronic noxious situations. In contrast, A2ARs are up-regulated in noxious brain conditions and their blockade confers robust brain neuroprotection in adult animals. The brain neuroprotective effect of A2AR antagonists is maintained in chronic noxious brain conditions without observable peripheral effects, thus justifying the interest of A2AR antagonists as novel protective agents in neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease, ischemic brain damage and epilepsy. The greater interest of A2AR blockade compared to A1R activation does not mean that A1R activation is irrelevant for a neuroprotective strategy. In fact, it is proposed that coupling A2AR antagonists with strategies aimed at bursting the levels of extracellular adenosine (by inhibiting adenosine kinase) to activate A1Rs might constitute the more robust brain neuroprotective strategy based on the adenosine neuromodulatory system. This strategy should be useful in adult animals and especially in the elderly (where brain pathologies are prevalent) but is not valid for fetus or newborns where the impact of adenosine receptors on brain damage is different