24 research outputs found

    Quantum Sine(h)-Gordon Model and Classical Integrable Equations

    Full text link
    We study a family of classical solutions of modified sinh-Gordon equation, $\partial_z\partial_{{\bar z}} \eta-\re^{2\eta}+p(z)\,p({\bar z})\ \re^{-2\eta}=0with with p(z)=z^{2\alpha}-s^{2\alpha}.Weshowthatcertainconnectioncoefficientsforsolutionsoftheassociatedlinearproblemcoincidewiththe. We show that certain connection coefficients for solutions of the associated linear problem coincide with the Q−functionofthequantumsine−Gordon-function of the quantum sine-Gordon (\alpha>0)orsinh−Gordon or sinh-Gordon (\alpha<-1)$ models.Comment: 35 pages, 3 figure

    Activation of cGMP-Dependent Protein Kinase Stimulates Cardiac ATP-Sensitive Potassium Channels via a ROS/Calmodulin/CaMKII Signaling Cascade

    Get PDF
    ) channels, an ion channel critical for stress adaptation in the heart; however, the underlying mechanism remains largely unknown. The present study was designed to address this issue. channels was confirmed in intact ventricular cardiomyocytes, which was ROS- and CaMKII-dependent. Kinetically, PKG appeared to stimulate these channels by destabilizing the longest closed state while stabilizing the long open state and facilitating opening transitions. channels and contribute to cardiac protection against ischemia-reperfusion injury

    The perspectives of biomedical application of the nanoceria

    No full text

    A gasometric method to determine erythrocyte catalase activity

    No full text
    We describe a new gasometric method to determine erythrocyte catalase activity by the measurement of the volume of oxygen produced as a result of hydrogen peroxide decomposition in a system where enzyme and substrate are separated in a special reaction test tube connected to a manometer and the reagents are mixed with a motor-driven stirrer. The position of the reagents in the test tube permits the continuous measurement of oxygen evolution from the time of mixing, without the need to stop the reaction by the addition of acid after each incubation time. The enzyme activity is reported as KHb, i.e., mg hydrogen peroxide decomposed per second per gram of hemoglobin (s-1 g Hb-1). The value obtained for catalase activity in 28 samples of hemolyzed human blood was 94.4 Âą 6.17 mg H2O2 s-1 g Hb-1. The results obtained were precise and consistent, indicating that this rapid, simple and inexpensive method could be useful for research and routine work
    corecore